cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A231812 Number of endofunctions on [n] where all nonempty preimages have the same cardinality.

Original entry on oeis.org

1, 1, 4, 9, 64, 125, 2826, 5047, 218688, 504009, 32216950, 39916811, 7585223196, 6227020813, 2424646536326, 1813027195995, 1072898135852416, 355687428096017, 616925243565037854, 121645100408832019, 441395941479128984940, 72313131901887676821
Offset: 0

Views

Author

Alois P. Heinz, Nov 13 2013

Keywords

Comments

Number of endofunctions f:{1,...,n}-> {1,...,n} such that (1<=i0 and |f^(-1)(j)|>0) implies |f^(-1)(i)| = |f^(-1)(j)|.

Examples

			a(2) = 4: (1,1), (1,2), (2,1), (2,2).
a(3) = 9: (1,1,1), (1,2,3), (1,3,2), (2,1,3), (2,2,2), (2,3,1), (3,1,2), (3,2,1), (3,3,3).
a(4) = 64: (1,1,1,1), (1,1,2,2), (1,1,3,3), ..., (4,4,3,3), (4,4,4,4).
		

Crossrefs

Main diagonal of A231915.

Programs

  • Maple
    with(numtheory): with(combinat): C:= binomial:
    a:= n-> `if`(n=0, 1, add(multinomial(n, n/d$d)*C(n, d), d=divisors(n))):
    seq(a(n), n=0..25);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); a[n_] := If[n == 0, 1, Sum[multinomial[n, Array[n/d&, d]]*Binomial[n, d], {d, Divisors[n]}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

Formula

a(n) = Sum_{d|n} multinomial(n; {n/d}^d)*C(n,d) for n>0, a(0) = 1.
a(n) = n! + n = A005095(n) for prime n.

A231915 Number T(n,k) of endofunctions on [n] such that at most k elements with nonempty preimage have equal preimage cardinality and non-equinumerous preimages have cardinalities that differ by at least k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 4, 0, 21, 3, 9, 0, 52, 88, 40, 64, 0, 305, 705, 105, 5, 125, 0, 7836, 2736, 4086, 2286, 2106, 2826, 0, 24703, 20293, 34993, 4711, 301, 7, 5047, 0, 155688, 557488, 107472, 283872, 188224, 178816, 178368, 218688
Offset: 0

Views

Author

Alois P. Heinz, Nov 15 2013

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains terms with k <= n. T(n,k) = T(n,n) = A231812(n) for k >= n.
T(p,p) = p! + p = A005095(p) for p prime.
T(p,p-1) = p for prime p.

Examples

			Triangle T(n,k) begins:
  1;
  0,     1;
  0,     2,     4;
  0,    21,     3,     9;
  0,    52,    88,    40,   64;
  0,   305,   705,   105,    5,  125;
  0,  7836,  2736,  4086, 2286, 2106, 2826;
  0, 24703, 20293, 34993, 4711,  301,    7, 5047;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A231807,
Main diagonal gives: A231812.
T(n,n)-T(n,n-1) gives: A000142.
Cf. A005095.

Programs

  • Maple
    with(combinat):
    b:= proc(t, i, u, k) option remember; `if`(t=0, 1,
          `if`(i<1, 0, b(t, i-1, u, k) +add(multinomial(t, t-i*j, i$j)
          *b(t-i*j, i-k, u-j, k)*u!/(u-j)!/j!, j=1.. min(k, t/i) )))
        end:
    T:= (n, k)-> b(n$3, k):
    seq(seq(T(n, k), k=0..n), n=0..11);
  • Mathematica
    multinomial[n_, k_List] := n!/Times@@(k!); b[t_, i_, u_, k_] := b[t, i, u, k] = If[t == 0, 1, If[i < 1, 0, b[t, i-1, u, k] + Sum[multinomial[t, Join[{t-i*j}, Array[i&, j]]]*b[t-i*j, i-k, u-j, k]*u!/(u-j)!/j!, {j, 1, Min[k, t/i]}]]]; T[n_, k_] := b[n, n, n, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 11}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
Showing 1-2 of 2 results.