cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A317451 a(n) = (n*A003500(n) - A231896(n))/2.

Original entry on oeis.org

0, 2, 16, 92, 464, 2182, 9824, 42936, 183648, 772746, 3209968, 13196564, 53791408, 217700110, 875718080, 3504277360, 13959102912, 55383875346, 218965651152, 862983998924, 3391602170512, 13295446717334, 51999641009696, 202948920530728, 790569797639456, 3074179492922778
Offset: 0

Views

Author

Rigoberto Florez, Jul 28 2018

Keywords

Comments

Derivative of Chebyshev second kind polynomials evaluated at 2.

References

  • R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
  • R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.

Crossrefs

Cf. A003500, A231896, A133156 (Chebyshev polynomials of the second kind).

Programs

  • Mathematica
    CoefficientList[ Series[2 x/(x^2 - 4x + 1)^2, {x, 0, 25}], x] (* Robert G. Wilson v, Aug 07 2018 *)
  • PARI
    a(n) = subst(deriv(polchebyshev(n, 2)), x, 2); \\ Michel Marcus, Jul 29 2018.
    
  • PARI
    concat(0, Vec(2*x / (1 - 4*x + x^2)^2 + O(x^40))) \\ Colin Barker, Aug 06 2018

Formula

From Colin Barker, Aug 06 2018: (Start)
G.f.: 2*x / (1 - 4*x + x^2)^2.
a(n) = (sqrt(3)*((2-sqrt(3))^n - (2+sqrt(3))^n) + 3*((2-sqrt(3))^(1+n) + (2+sqrt(3))^(1+n))*n) / 18.
a(n) = 8*a(n-1) - 18*a(n-2) + 8*a(n-3) - a(n-4) for n>3.
(End)

A231987 Decimal expansion of the side length (in radians) of the spherical square whose solid angle is exactly one steradian.

Original entry on oeis.org

1, 0, 4, 1, 1, 9, 1, 8, 0, 3, 6, 0, 6, 8, 7, 3, 3, 4, 0, 2, 3, 4, 6, 0, 7, 5, 3, 3, 5, 9, 2, 5, 6, 8, 7, 8, 8, 9, 0, 0, 6, 9, 6, 6, 7, 6, 0, 0, 6, 0, 8, 7, 1, 3, 4, 9, 1, 5, 2, 3, 0, 2, 8, 1, 3, 1, 2, 9, 9, 7, 1, 9, 7, 0, 4, 8, 2, 2, 3, 8, 5, 8, 9, 2, 8, 9, 5, 5, 5, 8, 8, 7, 1, 8, 8, 6, 4, 4, 3, 0, 7, 2, 7, 5, 9
Offset: 1

Views

Author

Stanislav Sykora, Nov 17 2013

Keywords

Comments

This is an inverse problem (but not an inverse value) to the one leading to A231986: what is the side s of a spherical square (in radians, rad) if it covers a given solid angle (in steradians, sr)? The solution (inverse of the formula in A231896) is s = 2*arcsin(sqrt(sin(Omega/4))). In this particular case, Omega = 1.

Examples

			1.041191803606873340234607533592568788900696676006087134915230281312997...
		

Crossrefs

Cf. A072097 (rad/deg), A019685 (deg/rad), A231981 (sr/deg^2), A231982 (deg^2/sr), A231986 (inverse problem), A231896.

Programs

  • Mathematica
    RealDigits[2*ArcSin[Sqrt[Sin[1/4]]], 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)
  • PARI
    default(realprecision, 120);
    2*asin(sqrt(sin(1/4))) \\ or
    solve(x = 1, 2, 4*asin((sin(x/2))^2) - 1) \\ least positive solution - Rick L. Shepherd, Jan 28 2014

Formula

Equals 2*arcsin(sqrt(sin(1/4))).

Extensions

Formula and comment corrected by Rick L. Shepherd, Jan 28 2014
Showing 1-2 of 2 results.