A231915 Number T(n,k) of endofunctions on [n] such that at most k elements with nonempty preimage have equal preimage cardinality and non-equinumerous preimages have cardinalities that differ by at least k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 4, 0, 21, 3, 9, 0, 52, 88, 40, 64, 0, 305, 705, 105, 5, 125, 0, 7836, 2736, 4086, 2286, 2106, 2826, 0, 24703, 20293, 34993, 4711, 301, 7, 5047, 0, 155688, 557488, 107472, 283872, 188224, 178816, 178368, 218688
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 2, 4; 0, 21, 3, 9; 0, 52, 88, 40, 64; 0, 305, 705, 105, 5, 125; 0, 7836, 2736, 4086, 2286, 2106, 2826; 0, 24703, 20293, 34993, 4711, 301, 7, 5047; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
with(combinat): b:= proc(t, i, u, k) option remember; `if`(t=0, 1, `if`(i<1, 0, b(t, i-1, u, k) +add(multinomial(t, t-i*j, i$j) *b(t-i*j, i-k, u-j, k)*u!/(u-j)!/j!, j=1.. min(k, t/i) ))) end: T:= (n, k)-> b(n$3, k): seq(seq(T(n, k), k=0..n), n=0..11);
-
Mathematica
multinomial[n_, k_List] := n!/Times@@(k!); b[t_, i_, u_, k_] := b[t, i, u, k] = If[t == 0, 1, If[i < 1, 0, b[t, i-1, u, k] + Sum[multinomial[t, Join[{t-i*j}, Array[i&, j]]]*b[t-i*j, i-k, u-j, k]*u!/(u-j)!/j!, {j, 1, Min[k, t/i]}]]]; T[n_, k_] := b[n, n, n, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 11}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
Comments