A231946 Partial sums of the third power of the arithmetic derivative function A003415.
0, 1, 2, 66, 67, 192, 193, 1921, 2137, 2480, 2481, 6577, 6578, 7307, 7819, 40587, 40588, 49849, 49850, 63674, 64674, 66871, 66872, 152056, 153056, 156431, 176114, 208882, 208883, 238674, 238675, 750675, 753419, 760278, 762006, 978006, 978007, 987268, 991364
Offset: 1
Keywords
Examples
(1')^3 + (2')^3 + (3')^3 + (4')^3 + (5')^3 = 0+1+1+64+1 = 67, so a(5)=67.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- E. J. Barbeau, Remark on an arithmetic derivative, Canad. Math. Bull., vol. 4, no. 2, May 1961, pp. 117-122.
Programs
-
Maple
der:=n->n*add(op(2, p)/op(1, p), p=ifactors(n)[2]): seq(add(der(i)^3,i=1..j),j=1..60);
-
Mathematica
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; Accumulate[Table[dn[n]^3, {n, 100}]] (* T. D. Noe, Nov 20 2013 *)
Formula
a(n) = Sum_{j=1..n} (j')^3, where j' = A003415(j).
Comments