A231961 Expansion of b(q)^3 - 3*c(q)^3 in powers of q where b(), c() are cubic AGM theta functions.
1, -90, -216, -738, -1170, -1728, -2160, -4500, -3672, -6570, -6480, -8640, -9594, -15300, -10800, -17280, -18450, -20736, -19656, -32580, -22464, -36900, -32400, -38016, -36720, -54090, -36720, -59058, -58500, -60480, -53136, -86580, -58968, -86400, -77760
Offset: 0
Keywords
Examples
G.f. = 1 - 90*q - 216*q^2 - 738*q^3 - 1170*q^4 - 1728*q^5 - 2160*q^6 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
Programs
-
Mathematica
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q]^3/ eta[q^3])^3 - 81*(eta[q^3]^3/eta[q])^3, {q, 0, 50}], q] (* G. C. Greubel, Aug 08 2018 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 / eta(x^3 + A))^3 - 81 * x * (eta(x^3 + A)^3 / eta(x + A))^3, n))};
Comments