A231979 Numbers n such that for every digit d in n, 2*n + 6*d - 3 is prime.
1, 2, 4, 5, 7, 8, 10, 13, 17, 19, 22, 29, 32, 34, 37, 43, 44, 50, 52, 55, 65, 67, 70, 77, 83, 89, 112, 113, 115, 118, 124, 127, 133, 145, 152, 155, 167, 172, 182, 188, 199, 200, 215, 229, 274, 277, 295, 302, 308, 322, 362, 379, 400, 418, 433, 488, 494, 499
Offset: 1
Examples
124 is in the sequence since 2*124+6*1-3=251 which is prime, 2*124+6*2-3=257 which is prime, 2*124+6*4-3=269 which is prime. 241 is NOT in the sequence since 2*241+6*2-3=491 which is prime, 2*241+6*4-3=503 which is prime, but 2*241+6*1-3=485 which is not prime.
Links
- T. D. Noe, Table of n, a(n) for n = 1..2000
Programs
-
Java
public class Ndp { // 2n+6d-3 is prime for all digits d in n private static final int MAX = 1000000; public static void main(String[] args) { String sequence = ""; loop: for (int n = 1; sequence.length() < 250 && n < MAX; n++) { for (int i = n; i > 0; i /= 10) { int d = i % 10; if (!isPrime(2 * n + 6 * d - 3)) { continue loop; } } sequence += n + ","; } System.out.println(sequence); } private static boolean isPrime(long n) { for (long i = 2; i <= Math.sqrt(n); i++) { if (n < 2 || n % i == 0) { return false; } } return true; } }
-
Mathematica
fQ[n_] := Module[{d = IntegerDigits[n]}, And @@ PrimeQ[2*n + 6*d - 3]]; Select[Range[1000], fQ] (* T. D. Noe, Nov 19 2013 *)
Comments