A231985 Decimal expansion of the side length (in degrees) of the spherical square whose solid angle is exactly one deg^2.
1, 0, 0, 0, 0, 1, 2, 6, 9, 2, 3, 4, 4, 1, 6, 3, 3, 7, 9, 1, 6, 0, 6, 0, 3, 6, 3, 3, 3, 5, 8, 6, 6, 1, 7, 7, 8, 6, 3, 9, 6, 5, 2, 1, 8, 5, 2, 8, 7, 7, 6, 6, 6, 4, 9, 0, 3, 5, 0, 7, 8, 1, 3, 6, 4, 3, 8, 2, 8, 4, 3, 2, 4, 1, 8, 9, 7, 4, 7, 5, 1, 7, 2, 2, 4, 0, 2, 4, 1, 2, 1, 1, 9, 0, 2, 4, 6, 7, 9, 8, 8, 5, 9, 2, 0
Offset: 1
Examples
1.0000126923441633791606036333586617786396521852877666490350781364...
References
- G. V. Brummelen, Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry, Princeton University Press, 2012, ISBN 978-0691148922.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
- Wikipedia, Solid angle, Section 3.3 (Pyramid)
- Wikipedia, Square degree
- Wikipedia, Steradian
Crossrefs
Programs
-
Mathematica
RealDigits[(360/Pi)*ArcSin[Sqrt[Sin[(Pi/360)^2]]],10,120][[1]] (* Harvey P. Dale, Jun 09 2021 *)
-
PARI
default(realprecision, 120); (360/Pi)*asin(sqrt(sin((Pi/360)^2))) \\ or (180/Pi)*solve(x = 0, 1, 4*asin(sin(x/2)^2) - (Pi/180)^2) \\ Rick L. Shepherd, Jan 29 2014
Formula
(360/Pi)*arcsin(sqrt(sin((Pi/360)^2))).
Comments