cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232106 Number of groups of order prime(n)^6.

Original entry on oeis.org

267, 504, 684, 860, 1192, 1476, 1944, 2264, 2876, 4068, 4540, 6012, 7064, 7664, 8852, 10908, 13136, 14012, 16520, 18292, 19296, 22244, 24296, 27648, 32472, 34964, 36284, 38912, 40356, 43128, 53780, 56992, 62064, 63824, 72828, 74740, 80532, 86504, 90572, 96948
Offset: 1

Views

Author

Eric M. Schmidt, Nov 21 2013

Keywords

Comments

Isomorphism types of groups and nilpotent Lie rings with order prime(n)^6.

Crossrefs

Programs

  • GAP
    A232106 := Concatenation([267, 504], List(Filtered([5..10^5], IsPrime), p -> 3 * p^2 + 39 * p + 344 + 24 * Gcd(p-1, 3) + 11 * Gcd(p-1, 4) + 2 * Gcd(p-1, 5))); # Muniru A Asiru, Nov 16 2017
  • Maple
    a:= n-> `if`(n<3, [267, 504][n], (c-> 386 +(45 +3*c)*c+
        24*igcd(c, 3) +11*igcd(c, 4) +2*igcd(c, 5))(ithprime(n)-1)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Nov 17 2017
  • Mathematica
    Table[FiniteGroupCount[Prime[n]^6], {n, 40}] (* Michael De Vlieger, Apr 12 2016 *)
  • PARI
    a(n) = if(n==1, 267, if (n==2, 504, my(p=prime(n)); 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5))); \\ Altug Alkan, Apr 12 2016
    
  • Sage
    def A232106(n) : p = nth_prime(n); return 267 if p==2 else 504 if p==3 else 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5)
    

Formula

For a prime p > 3, the number of groups of order p^6 is 3p^2 + 39p + 344 + 24 gcd(p - 1, 3) + 11 gcd(p - 1, 4) + 2 gcd(p - 1, 5).