A232127 Maximal number of digits that can be appended to prime(n) preserving primality at each step.
7, 7, 7, 7, 1, 6, 3, 8, 6, 6, 3, 6, 1, 5, 3, 0, 6, 5, 5, 4, 6, 1, 1, 0, 2, 4, 9, 0, 4, 0, 5, 1, 1, 5, 3, 1, 2, 1, 0, 2, 0, 4, 2, 3, 7, 5, 2, 3, 4, 3, 5, 4, 5, 0, 4, 3, 4, 5, 3, 1, 1, 5, 1, 2, 2, 0, 6, 3, 0, 4, 5, 2, 4, 5, 1, 2, 0, 0, 3, 10, 0, 3, 0, 2, 4, 0, 3, 0, 0, 6
Offset: 1
Examples
a(14)=5 because for prime(14)=43, one can add at most 5 digits to the right preserving primality at each step: 439 is prime, 4391 is prime, 43913 is prime, 439133 is prime, 4391339 is prime. There is no longer chain possible starting with 43.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
- Archimedes' Lab, What's Special About This Number?, section about 43.
Crossrefs
Cf. A232125.
Programs
-
PARI
{howfar(p)=my(m);forstep(d=1,9,2,d==5&&next;isprime(p*10+d)||next;m=max(1+howfar(10*p+d),m));m}
-
Python
from sympy import isprime, prime def a(n): pn = prime(n); ftr = {pn}; ext = 0 while len(ftr) > 0: r1 = set(filter(isprime, (int(str(e)+d) for d in "1379" for e in ftr))) ext, ftr = ext+1, r1 return ext - 1 print([a(n) for n in range(1, 91)]) # Michael S. Branicky, Jul 07 2021
-
Python
# faster version for initial segment of sequence from sympy import isprime, prime, primerange def aupton(terms): alst = [] for p in primerange(1, prime(terms)+1): r = {p}; e = 0 while len(r) > 0: r1 = set(filter(isprime, (int(str(e)+d) for d in "1379" for e in r))) e, r = e+1, r1 alst.append(e - 1) return alst print(aupton(90)) # Michael S. Branicky, Jul 07 2021
Formula
a(n) > 0 if and only if there is a prime p between 10*prime(n)+1 and 10*prime(n)+9, in which case a(n) >= 1+a(primepi(p))
a(n) = max { L in N | exists (p[0],...,p[L]) in P^(L+1) (P = the primes A000040), such that p[0] = prime(n) and for k=1,...,L : p[k-1] = floor(p[k]/10) }
Comments