A232137 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.
6, 36, 44, 200, 728, 328, 1140, 10956, 14752, 2448, 6468, 169692, 602468, 298912, 18272, 36752, 2616952, 25364480, 33162868, 6056640, 136384, 208772, 40399768, 1063744484, 3795674252, 1825568436, 122721280, 1017984, 1186044, 623543776
Offset: 1
Examples
Some solutions for n=2 k=4 ..0..1..2..0..1....0..1..2..0..1....0..1..2..1..0....0..1..2..0..0 ..0..0..1..2..1....0..0..2..0..2....1..0..2..0..2....0..0..2..2..1 ..1..2..1..0..2....0..2..0..1..2....1..2..1..2..0....2..0..2..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..143
Crossrefs
Column 1 is A102591
Formula
Empirical for column k:
k=1: a(n) = 8*a(n-1) -4*a(n-2)
k=2: a(n) = 22*a(n-1) -36*a(n-2) +16*a(n-3)
k=3: [order 8]
k=4: [order 14]
k=5: [order 34] for n>36
Empirical for row n:
n=1: a(n) = 6*a(n-1) -11*a(n-3) +4*a(n-4)
n=2: [order 17]
n=3: [order 76] for n>77
Comments