cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A232247 Decimal expansion of the arctan of 2/Pi.

Original entry on oeis.org

5, 6, 6, 9, 1, 1, 5, 0, 4, 9, 4, 1, 0, 0, 9, 4, 0, 5, 0, 8, 2, 8, 9, 7, 7, 4, 6, 7, 2, 2, 6, 1, 9, 1, 5, 3, 8, 0, 6, 4, 8, 0, 2, 3, 9, 0, 9, 2, 6, 8, 2, 3, 3, 5, 7, 5, 7, 7, 5, 9, 4, 7, 2, 0, 4, 5, 8, 9, 3, 0, 1, 1, 7, 5, 9, 7, 0, 9, 1, 8, 2, 7, 5, 3, 1, 0
Offset: 0

Views

Author

Bruno Berselli, Nov 21 2013

Keywords

Examples

			0.56691150494100940508289774672261915380648023909268233575775947204589...
		

Crossrefs

Programs

  • Maple
    evalf(arctan(2/Pi));
  • Mathematica
    RealDigits[ArcTan[2/Pi], 10, 90][[1]]
  • PARI
    atan(2/Pi) \\ Charles R Greathouse IV, Mar 24 2021

Formula

Equals A019669 - A232182.
Equals Sum_{k>=0} (-1)^k*(2/Pi)^(1+2*k)/(1+2*k).

A232273 Decimal expansion of the arctan of Pi.

Original entry on oeis.org

1, 2, 6, 2, 6, 2, 7, 2, 5, 5, 6, 7, 8, 9, 1, 1, 6, 8, 3, 4, 4, 4, 3, 2, 2, 0, 8, 3, 6, 0, 5, 6, 9, 8, 3, 4, 3, 5, 0, 8, 9, 4, 7, 6, 7, 0, 4, 2, 4, 3, 8, 3, 5, 9, 6, 9, 7, 3, 8, 0, 9, 9, 5, 2, 2, 5, 2, 2, 2, 5, 3, 0, 2, 6, 9, 1, 7, 3, 3, 9, 6, 5, 3, 4, 5
Offset: 1

Views

Author

Bruno Berselli, Nov 22 2013

Keywords

Examples

			1.2626272556789116834443220836056983435089476704243835969738099522522...
		

Crossrefs

Programs

Formula

Equals A019669 - A232272.

A331480 Decimal expansion of arcsin(2/Pi).

Original entry on oeis.org

6, 9, 0, 1, 0, 7, 0, 9, 1, 3, 7, 4, 5, 3, 9, 9, 5, 2, 0, 0, 4, 3, 7, 7, 9, 0, 9, 0, 7, 0, 8, 5, 0, 7, 2, 0, 0, 6, 9, 8, 3, 3, 0, 9, 9, 7, 0, 0, 0, 5, 1, 0, 8, 7, 0, 3, 8, 4, 6, 5, 6, 1, 3, 9, 8, 4, 8, 2, 0, 1, 9, 5, 5, 5, 0, 4, 6, 3, 4, 0, 8, 9, 0, 7, 0, 5, 2, 8, 7, 7, 5
Offset: 0

Views

Author

Jianing Song, Jan 18 2020

Keywords

Examples

			0.69010709137453995200...
		

Crossrefs

Cf. A060294 (decimal expansion of 2/Pi), A275477 (arccos(2/Pi)), A232247 (arctan(2/Pi)), A232182 (arccot(2/Pi)).

Programs

  • Mathematica
    First@RealDigits@N[ArcSin[2/Pi], 120]
  • PARI
    default(realprecision, 100); asin(2/Pi)

Formula

Equals Pi/2 - A275477.
Showing 1-3 of 3 results.