cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A232272 Decimal expansion of arctan(1/Pi).

Original entry on oeis.org

3, 0, 8, 1, 6, 9, 0, 7, 1, 1, 1, 5, 9, 8, 4, 9, 3, 5, 7, 8, 6, 9, 9, 9, 6, 0, 8, 0, 3, 4, 0, 5, 3, 0, 9, 8, 5, 8, 9, 6, 3, 7, 0, 2, 9, 2, 6, 3, 1, 6, 9, 3, 1, 3, 5, 1, 3, 6, 6, 2, 3, 4, 3, 9, 0, 1, 6, 8, 2, 9, 0, 0, 4, 5, 1, 3, 7, 0, 5, 3, 3, 9, 6, 8, 9
Offset: 0

Views

Author

Bruno Berselli, Nov 22 2013

Keywords

Examples

			0.30816907111598493578699960803405309858963702926316931351366234390168...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 35, page 338.

Crossrefs

Programs

Formula

Equals A019669 - A232273.
Equals Sum_{i>=0} (-1)^k/((1+2*k)*Pi^(1+2*k)).
From Wolfe Padawer, Feb 16 2023: (Start)
Equals arccot(Pi).
Equals arcsin(1/sqrt(Pi^2 + 1)).
Equals arccos(1/sqrt(1 + 1/Pi^2)). (End)

A233528 Decimal expansion of arctan(2*Pi): adjacent angle for a right triangle of equal area to a disk.

Original entry on oeis.org

1, 4, 1, 2, 9, 6, 5, 1, 3, 6, 5, 0, 6, 7, 3, 7, 7, 5, 9, 0, 6, 3, 7, 1, 2, 9, 4, 9, 8, 5, 6, 9, 3, 2, 5, 1, 8, 4, 9, 3, 5, 1, 3, 4, 5, 9, 0, 8, 8, 5, 0, 1, 8, 5, 0, 0, 7, 1, 9, 1, 4, 3, 2, 8, 9, 4, 0, 0, 8, 6, 0, 8, 3, 5, 7, 7, 9, 2, 2, 3, 9, 0, 1, 5, 3, 4, 3, 0, 2, 7, 3, 2, 3, 0, 2, 5, 5, 3, 9, 3
Offset: 1

Views

Author

John W. Nicholson, Dec 11 2013

Keywords

Comments

In radians, this constant is the arctan(base / height) = arctan(Adjacent / Opposite) = arctan(circumference / radius) for a unit circle is arctan(A019692), where A019692 = 2*A000796.
"Archimedes used the tools of Euclidean geometry to show that the area inside a circle is equal to that of a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius in his book Measurement of a Circle." quote from Wikipedia link.

Examples

			1.412965136506737759063712949856932518493513459088501850071914328940...
		

Crossrefs

Cf. A019692: 2*Pi; A232273: arctan(Pi); A233527: arctan(1/(2*Pi)).

Programs

  • Mathematica
    RealDigits[ArcTan[2 Pi], 10, 110][[1]] (* Bruno Berselli, Dec 16 2013 *)
  • PARI
    atan(2*Pi)

Formula

Equals A019669 - A233527. [Bruno Berselli, Dec 16 2013]

A360700 Decimal expansion of arcsec(Pi).

Original entry on oeis.org

1, 2, 4, 6, 8, 5, 0, 2, 1, 9, 8, 6, 2, 9, 1, 5, 8, 9, 9, 2, 5, 0, 3, 6, 8, 8, 6, 1, 0, 1, 0, 9, 7, 7, 6, 0, 6, 4, 2, 5, 8, 2, 8, 5, 7, 4, 2, 1, 5, 4, 3, 1, 5, 8, 4, 9, 5, 0, 4, 1, 0, 9, 1, 7, 8, 9, 4, 3, 2, 3, 9, 7, 3, 9, 6, 2, 2, 0, 1, 6, 0, 9, 1, 2, 1, 6, 7, 9, 3, 5, 3, 7, 3, 2, 1, 0, 4, 1, 9, 0, 2, 0, 4, 8, 0
Offset: 1

Views

Author

Wolfe Padawer, Feb 16 2023

Keywords

Examples

			1.246850219862915899250368861010977606425828574215431584950410917894...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcSec[Pi], 10, 105][[1]]

Formula

Equals Pi/2 - arccsc(Pi) = Pi/2 - A360701.
Equals arcsin(sqrt(1 - 1/Pi^2)).
Equals arctan(sqrt(Pi^2 - 1)).
Equals |arcsech(Pi)|.
Equals arccos(1/Pi).

A360701 Decimal expansion of arccsc(Pi).

Original entry on oeis.org

3, 2, 3, 9, 4, 6, 1, 0, 6, 9, 3, 1, 9, 8, 0, 7, 1, 9, 9, 8, 0, 9, 5, 2, 8, 3, 0, 6, 2, 8, 7, 7, 3, 8, 3, 5, 6, 7, 2, 7, 5, 6, 1, 2, 5, 4, 7, 2, 1, 2, 1, 3, 2, 5, 5, 3, 7, 0, 6, 1, 3, 7, 8, 2, 5, 9, 5, 8, 4, 2, 2, 9, 1, 8, 0, 9, 0, 2, 8, 9, 0, 1, 9, 2, 3, 3, 8, 0, 5, 8, 9, 3, 8, 9, 5, 4, 3, 4, 3, 7, 8, 6, 2, 7, 1
Offset: 0

Views

Author

Wolfe Padawer, Feb 16 2023

Keywords

Examples

			0.323946106931980719980952830628773835672756125472121325537061378259...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcCsc[Pi], 10, 105][[1]]

Formula

Equals Pi/2 - arcsec(Pi).
Equals arccos(sqrt(1 - 1/Pi^2)).
Equals arctan(1/(sqrt(Pi^2 - 1))).
Showing 1-4 of 4 results.