cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232187 Number T(n,k) of parity alternating permutations of [n] with exactly k descents from odd to even numbers; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.

Original entry on oeis.org

1, 1, 2, 1, 1, 5, 3, 2, 8, 2, 20, 44, 8, 6, 66, 66, 6, 114, 594, 414, 30, 24, 624, 1584, 624, 24, 864, 8784, 14544, 4464, 144, 120, 6840, 36240, 36240, 6840, 120, 8280, 147720, 471120, 353520, 55320, 840, 720, 86400, 857520, 1739520, 857520, 86400, 720, 96480
Offset: 0

Views

Author

Alois P. Heinz, Nov 20 2013

Keywords

Comments

T(2n+1,k) = T(2n+1,n-k).
T(2n+2,n) = T(2n+1,n) + T(2n+3,n+1).

Examples

			T(5,0) = 2: 12345, 34125.
T(5,1) = 8: 12543, 14325, 14523, 32145, 34521, 52143, 52341, 54123.
T(5,2) = 2: 32541, 54321.
T(6,2) = 8: 163254, 165432, 321654, 325416, 541632, 543216, 632541, 654321.
T(7,0) = 6: 1234567, 1256347, 3412567, 3456127, 5612347, 5634127.
T(7,1) = 66: 1234765, 1236547, 1236745, ..., 7456123, 7612345, 7634125.
T(7,2) = 66: 1254763, 1276543, 1432765, ..., 7652143, 7652341, 7654123.
T(7,3) = 6: 3254761, 3276541, 5432761, 5476321, 7632541, 7654321.
Triangle T(n,k) begins:
:  0 :   1;
:  1 :   1;
:  2 :   2;
:  3 :   1,    1;
:  4 :   5,    3;
:  5 :   2,    8,     2;
:  6 :  20,   44,     8;
:  7 :   6,   66,    66,     6;
:  8 : 114,  594,   414,    30;
:  9 :  24,  624,  1584,   624,   24;
: 10 : 864, 8784, 14544,  4464,  144;
: 11 : 120, 6840, 36240, 36240, 6840, 120;
		

Crossrefs

Column k=0 gives: A199660.
Row sums give: A092186 (for n>0).
T(2n+1,n) = A000142(n).
T(2n+2,n) = A001048(n+1).

Formula

T(2n+1,k) = n! * A173018(n+1,k) = A000142(n) * A173018(n+1,k).