cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232224 Number of ways of arranging n chords on a circle (handshakes between 2n people across a table) with exactly 3 simple intersections.

Original entry on oeis.org

0, 0, 0, 1, 20, 195, 1430, 9009, 51688, 278460, 1434120, 7141530, 34648856, 164663785, 769491450, 3546222225, 16152872400, 72846725160, 325722299760, 1445598337950, 6373942543800, 27942072562950, 121863923024844, 529043313674106, 2287209524819120
Offset: 0

Views

Author

N. J. A. Sloane, Nov 22 2013

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - Sqrt[1 - 4 x^2])^6 ((1 - x^2) Sqrt[1 - 4 x^2] + 7 x^2 - 26 x^4)/(64 x^6 Sqrt[1 - 4 x^2]^5), {x, 0, 48}], x^2] (* Michael De Vlieger, Sep 30 2015 *)
  • PARI
    lista(nn) = {np = 2*nn+2; default(seriesprecision, np); pol = (1-sqrt(1-4*x^2))^6*((1-x^2)*sqrt(1-4*x^2)+7*x^2-26*x^4)/(64*x^6*sqrt(1-4*x^2)^5) + O(x^(np)); forstep (n=0, 2*nn, 2, print1(polcoeff(pol, n), ", "););} \\ Michel Marcus, Sep 30 2015
    
  • PARI
    x='x+O('x^33); concat([0,0,0],Vec((1-sqrt(1-4*x))^6*((1-x)*sqrt(1-4*x)+7*x-26*x^2) / (64*x^3*sqrt(1-4*x)^5))) \\ Joerg Arndt, Sep 30 2015

Formula

Pilaud-Rue give an explicit g.f.
a(n) = [x^(2n)] (1-sqrt(1-4*x^2))^6*((1-x^2)*sqrt(1-4*x^2)+7*x^2-26*x^4) / (64*x^6*sqrt(1-4*x^2)^5). - Michel Marcus, Sep 30 2015

Extensions

Corrected initial terms and more terms from Lars Blomberg, Sep 30 2015