cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A274404 Number T(n,k) of modified skew Dyck paths of semilength n with exactly k anti-down steps; triangle T(n,k), n>=0, 0<=k<=n-floor((1+sqrt(max(0,8n-7)))/2), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 14, 6, 42, 28, 3, 132, 120, 28, 1, 429, 495, 180, 20, 1430, 2002, 990, 195, 10, 4862, 8008, 5005, 1430, 165, 4, 16796, 31824, 24024, 9009, 1650, 117, 1, 58786, 125970, 111384, 51688, 13013, 1617, 70, 208012, 497420, 503880, 278460, 89180, 16016, 1386, 35
Offset: 0

Views

Author

Alois P. Heinz, Jun 20 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.

Examples

			              /\
              \ \
T(3,1) = 1:   /  \
.
Triangle T(n,k) begins:
:     1;
:     1;
:     2;
:     5,     1;
:    14,     6;
:    42,    28,     3;
:   132,   120,    28,    1;
:   429,   495,   180,   20;
:  1430,  2002,   990,  195,   10;
:  4862,  8008,  5005, 1430,  165,   4;
: 16796, 31824, 24024, 9009, 1650, 117, 1;
		

Crossrefs

Columns k=0-3 give: A000108, A002694(n-1), A074922(n-2), A232224(n-3).
Row sums give A230823.
Last elements of rows give A092392(n-1) for n>0.

Programs

  • Maple
    b:= proc(x, y, t, n) option remember; expand(`if`(y>n, 0,
          `if`(n=y, `if`(t=2, 0, 1), b(x+1, y+1, 0, n-1)+
          `if`(t<>1 and x>0, b(x-1, y+1, 2, n-1)*z, 0)+
          `if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(0$3, 2*n)):
    seq(T(n), n=0..14);
  • Mathematica
    b[x_, y_, t_, n_] := b[x, y, t, n] = Expand[If[y > n, 0,
         If[n == y, If[t == 2, 0, 1], b[x + 1, y + 1, 0, n - 1] +
         If[t != 1 && x > 0, b[x - 1, y + 1, 2, n - 1] z, 0] +
         If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]]];
    T[n_] := CoefficientList[b[0, 0, 0, 2n], z];
    T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)

Formula

Sum_{k>0} k * T(n,k) = A274405(n).

A074922 Number of ways of arranging n chords on a circle (handshakes between 2n people across a table) with exactly 2 simple intersections.

Original entry on oeis.org

0, 0, 0, 3, 28, 180, 990, 5005, 24024, 111384, 503880, 2238390, 9806280, 42493880, 182530530, 778439025, 3300049200, 13919756400, 58462976880, 244639718730, 1020422356200, 4244365452600, 17610393500700, 72907029092898
Offset: 0

Views

Author

Henry Bottomley, Oct 06 2002

Keywords

Examples

			a(3)=3 since the only possibility is to have one of the three chords intersected by the other two.
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2n,n-2] (n-2)/2,{n,0,30}] (* Harvey P. Dale, Nov 04 2011 *)

Formula

a(n) = C(2n, n-2)*(n-2)/2 = A002694(n)*(n-2)/2 = A067310(n, 2) = Sum_{0<=j
Showing 1-2 of 2 results.