A232243 a(n) = wt(n^2) - wt(n), where wt(n) = A000120(n) is the binary weight function.
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 0, 1, 0, 0, 0, 1, 1, 2, 1, 3, 2, -1, 0, 2, 1, 2, 0, 1, 0, 0, 0, 1, 1, 2, 1, 3, 2, 3, 1, 2, 3, 3, 2, 4, -1, -1, 0, 2, 2, 1, 1, 4, 2, 2, 0, 2, 1, 2, 0, 1, 0, 0, 0, 1, 1, 2, 1, 3, 2, 3, 1, 3, 3, 5, 2, 3, 3, 0, 1, 3, 2, 4, 3, 3, 3, 2, 2, 5, 4, 0, -1, 1, -1, -1, 0, 2, 2, 2
Offset: 0
Examples
a(5): 5 = 101_2, 25 = 11001_2, so a(5) = 3 - 2 = 1. a(23): 23 = 10111_2, 529 = 10001001_2, so a(23) = 3 - 4 = -1.
Links
- Dumitru Damian, Table of n, a(n) for n = 0..10000
Programs
-
JavaScript
function bitCount(n) { var i,c,s; c=0; s=n.toString(2); for (i=0;i
-
PARI
a(n) = hammingweight(n^2) - hammingweight(n); \\ Michel Marcus, Mar 05 2023
-
Python
def A232243(n): return (n**2).bit_count()-n.bit_count() print(list(A232243(n) for n in range(10**2))) # Dumitru Damian, Mar 04 2023
Comments