cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A064414 Fix a > 0, b > 0, k > 0 and define G_1 = a, G_2 = b, G_k = G_(k-1) + G_(k-2); sequence gives numbers m such that there exists (a, b) where G_k is divisible by m.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 14, 23, 27, 43, 49, 67, 81, 83, 86, 98, 103, 127, 134, 163, 167, 206, 223, 227, 243, 254, 283, 326, 343, 367, 383, 443, 446, 463, 467, 487, 503, 523, 529, 547, 566, 587, 607, 643, 647, 683, 686, 727, 729, 734, 787, 823, 827, 863, 883, 887
Offset: 1

Views

Author

Naohiro Nomoto, Oct 15 2001

Keywords

Comments

From Logan J. Kleinwaks, Oct 29 2017: (Start)
The squares of this sequence are the squares in A232656.
Conjecture: these are the numbers j such that j^2 = Sum_{d|j} phi(d)*A001177(d), where phi = Euler's totient function (A000010). See A232656. (End)

Examples

			If a = 1, b = 4, then G_k is (1, 4, 5, 9, 14, 23, ...) and no G_k is a multiple of 11. Therefore 11 is not in the sequence.
		

References

  • Teruo Nishiyama, Fibonacci numbers, Suuri-Kagaku, No. 285, March 1987, 67-69, (in Japanese).

Crossrefs

Prime terms are in A000057.

Programs

  • Mathematica
    g[a_, b_, k_] := Fibonacci[k-2]*a + Fibonacci[k-1]*b; ok[n_] := Catch[ Do[ test = Catch[ Do[ If[ Divisible[g[a, b, k], n], Throw[True]], {k, 1, 2*n}]]; If[test == Null, Throw[False]], {a, 1, Floor[Sqrt[n]]}, {b, 1, Floor[Sqrt[n]]}]] ; Reap[ Do[ If[ok[n] == Null, Print[n]; Sow[n]], {n, 1, 1000}]][[2, 1]] (* Jean-François Alcover, Jul 19 2012 *)

Extensions

More terms from David Wasserman, Jul 18 2002
Name edited by David A. Corneth, Oct 30 2017

A232656 The number of pairs of numbers below n that, when generating a Fibonacci-like sequence modulo n, contain zeros.

Original entry on oeis.org

1, 4, 9, 16, 21, 36, 49, 40, 81, 84, 101, 96, 85, 196, 189, 136, 145, 180, 325, 336, 153, 404, 529, 216, 521, 340, 729, 496, 393, 756, 901, 520, 509, 292, 1029, 384, 685, 652, 765, 840, 801, 612, 1849, 1016, 1701, 1060, 737, 504, 2401, 2084, 1305, 1360, 1405, 1476, 521, 1096, 1629, 1572
Offset: 1

Views

Author

Brandon Avila and Tanya Khovanova, Nov 27 2013

Keywords

Comments

a(n) = n^2 iff n is in A064414, a(n) is not equal to n^2 iff n is in A230457.
a(n) + A232357(n) = n^2.

Examples

			The sequence 2,1,3,4,2,1 is the sequence of Lucas numbers modulo 5. Lucas numbers are never divisible by 5. The 4 pairs (2,1), (1,3), (3,4), (4,2) are the only pairs that can generate a sequence modulo 5 that doesn't contain zeros. Thus, a(5) = 21, as 21 other pairs generate sequences that do contain zeros.
Any Fibonacci like sequence contains elements divisible by 2, 3, or 4. Thus, a(2) = 4, a(3) = 9, a(4) = 16.
		

Crossrefs

Programs

  • Mathematica
    fibLike[list_] := Append[list, list[[-1]] + list[[-2]]]; Table[k^2 -Count[Flatten[Table[Count[Nest[fibLike, {n, m}, k^2]/k, _Integer], {n, k - 1}, {m, k - 1}]], 0], {k, 70}]

Formula

Conjecture: a(n) = Sum_{d|n} phi(d)*A001177(d), where phi = Euler's totient function (A000010). - Logan J. Kleinwaks, Oct 28 2017
a(n) = Sum_{d|n} phi(d)*A001177(d) = Sum_{k=1..n} A001177(n/gcd(n,k)) = Sum_{k=1..n} A001177(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021
Showing 1-2 of 2 results.