cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232394 The number of compositions of n with no more than 3 consecutive identical parts (summands).

Original entry on oeis.org

1, 1, 2, 4, 7, 15, 29, 57, 111, 218, 429, 841, 1651, 3239, 6355, 12473, 24475, 48029, 94249, 184946, 362932, 712194, 1397569, 2742507, 5381729, 10560797, 20723884, 40667338, 79803197, 156601100, 307304821, 603036937, 1183364302, 2322164658, 4556879623
Offset: 0

Views

Author

Geoffrey Critzer, Nov 23 2013

Keywords

Examples

			a(6) = 29 because there are 32 compositions of 6 but we exclude: 1+1+1+1+1+1, 1+1+1+1+2, 2+1+1+1+1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, c) option remember;
           `if`(n=0, 1, add(`if`(t<>j, b(n-j, j, 1),
           `if`(c<3, b(n-j, j, c+1), 0)), j=1..n))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 24 2013
  • Mathematica
    nn=34; CoefficientList[Series[1/(1-Sum[(z^j+z^(2j)+z^(3j))/(1+z^j+z^(2j)+z^(3j)),{j,1,nn}]),{z,0,nn}],z]

Formula

The g.f. for the number of compositions of n with no more than m consecutive identical parts is 1/( 1 - sum_{j>=1} x^j*(1 - x^(j*m))/(1 - x^j)/ (1 + x^j*(1 - x^(j*m))/(1 - x^j)) ); set m = 3 for this sequence.
a(n) ~ c * d^n, where d=1.962341312018097075518216734398388302205091029921968626465436021267458..., c=0.506212613637348069558928622560083229757824786467201325660889396545904... - Vaclav Kotesovec, May 01 2014