A232434 Limit of rows in triangle A232433 when read in reverse order.
1, 2, 6, 14, 32, 68, 142, 276, 542, 1022, 1876, 3394, 6066, 10628, 18412, 31344, 52868, 88370, 146180, 239310, 388370, 624688, 997586, 1582640, 2493908, 3902574, 6069194, 9378078, 14411150, 22034860, 33520642, 50747992, 76471200, 114689926, 171242092, 254587046, 376981800, 556129468, 817412048, 1197096472, 1747047580
Offset: 1
Keywords
Examples
The triangle A232433 of coefficients of x^n*q^k, n >= 0, k = 0..n*(n-1)/2, begins: [1]; [1]; [2, 1]; [6, 6, 2, 1]; [24, 36, 22, 14, 6, 2, 1]; [120, 240, 210, 160, 104, 56, 32, 14, 6, 2, 1]; [720, 1800, 2040, 1830, 1448, 992, 674, 408, 232, 128, 68, 32, 14, 6, 2, 1]; ... where this sequence is the limit of the rows read in reverse order.
Links
- Matt Fayers, A function from partitions to natural numbers - is it familiar?, MathOverflow 30 may 2013. [From Wouter Meeussen, Apr 07 2014]
Crossrefs
Cf. A232433.
Programs
-
Mathematica
Clear[c]; c[0] = 1; Table[f = Sum[c[k] x^k/k!, {k, 0, n}]; c[n + 1] = n! SeriesCoefficient[f^2 (f /. x -> q x), {x, 0, n}] // Simplify; Coefficient[q*c[n + 1], q^(1 + n*(n - 1)/2)], {n, 0, 64}] (* or via combinatorics: *) Clear[f];f[{}]:=1;f[\[Lambda]?PartitionQ]:=f[\[Lambda]]=Block[{temp,i,j,\[Mu],\[Nu]},temp=\[Lambda]+Range[Length[\[Lambda]]];{i}=First@Position[temp,Max[temp],1,1];j=\[Lambda][[i]];\[Mu]=Drop[\[Lambda],i];\[Nu]=DeleteCases[\[Lambda]-j,q/;(q<=0)];Binomial[i+j,j]f[\[Mu]]f[\[Nu]]]; Table[Total[f/@IntegerPartitions[n]],{n,0,24}] (* Wouter Meeussen, Apr 07 2014 *)
-
PARI
{a(n)=local(A=1+x);for(i=1,n,A=exp(intformal(A*subst(A,x,x*y +x*O(x^n)),x)));n!*polcoeff(polcoeff(A,n,x),(n-1)*(n-2)/2,y)} for(n=1,20,print1(a(n),", "))
Formula
E.g.f. of triangle A232433 satisfies: G(x,q) = exp(Integral G(x,q)*G(q*x,q) dx).
Comments