A232444 Numbers n such that sigma(n) and sigma(n^2) are primes.
2, 4, 64, 289, 729, 15625, 7091569, 7778521, 11607649, 15912121, 43546801, 56957209, 138980521, 143688169, 171845881, 210801361, 211673401, 253541929, 256224049, 275792449, 308810329, 329386201, 357172201, 408807961, 499477801, 531625249, 769341169, 1073741824, 1260747049
Offset: 1
Keywords
Examples
4 is in the sequence because both sigma(4)=7 and sigma(4^2)=31 are primes.
Links
- Donovan Johnson and Chai Wah Wu, Table of n, a(n) for n = 1..10385 [Terms from 1 to 500 from Donovan Johnson]
Programs
-
PARI
isok(n) = isprime(sigma(n)) && isprime(sigma(n^2)); \\ Michel Marcus, Nov 26 2013
-
Python
from sympy import isprime, divisor_sigma A232444_list = [2]+[n for n in (d**2 for d in range(1,10**4)) if isprime(divisor_sigma(n)) and isprime(divisor_sigma(n**2))] # Chai Wah Wu, Jul 23 2016
Extensions
a(6)-a(12) from Michel Marcus, Nov 26 2013
a(13)-a(29) from Alex Ratushnyak, Nov 26 2013
Comments