cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A299147 Numbers k such that sigma(k), sigma(k^2) and sigma(k^3) are primes.

Original entry on oeis.org

4, 64, 289, 253541929, 499477801, 1260747049, 14450203681, 25391466409, 256221229489, 333456586849, 341122579249, 459926756041, 911087431081, 928731181849, 1142288550841, 2880002461249, 2923070670601, 3000305515321, 4103999343889, 4123226708329, 4258977385441
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2018

Keywords

Comments

All terms are squares (proof in A023194).
Sequence {b(n)} of the smallest numbers m such that sigma(m^k) are primes for all k = 1..n: 2, 2, 4, ... (if fourth term exists, it must be greater than 10^16).

Examples

			4 is in the sequence because all sigma(4) = 7, sigma(4^2) = 31 and sigma(4^3) = 127 are primes.
		

Crossrefs

Subsequence of A232444.

Programs

  • Magma
    [n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^2)) and IsPrime(SumOfDivisors(n^3))];
    
  • Maple
    N:= 10^14: # to get all terms <= N
    Res:= NULL:
    p:= 1:
    do
      p:= nextprime(p);
      if p^2 > N then break fi;
      for k from 2 by 2 while p^k <= N do
        if isprime(k+1) and isprime(2*k+1) and isprime(3*k+1) then
          q1:= (p^(k+1)-1)/(p-1);
          q2:= (p^(2*k+1)-1)/(p-1);
          q3:= (p^(3*k+1)-1)/(p-1);
          if isprime(q1) and isprime(q2) and isprime(q3) then
            Res:= Res, p^k;
          fi
        fi
      od
    od:
    sort([Res]); # Robert Israel, Feb 22 2018
  • Mathematica
    k = 1; A299147 = {}; While[k < 4260000000000, If[Union@ PrimeQ@ DivisorSigma[1, {k, k^2, k^3}] == {True}, AppendTo[A299147, k]]; k++]; A299147 (* Robert G. Wilson v, Feb 10 2018 *)
  • PARI
    isok(n) = isprime(sigma(n)) && isprime(sigma(n^2)) && isprime(sigma(n^3)); \\ Michel Marcus, Feb 05 2018

A299153 Numbers k such that sigma(k) and sigma(k^3) are both primes.

Original entry on oeis.org

4, 9, 16, 25, 64, 289, 2401, 7921, 3418801, 19439281, 24730729, 40819321, 52258441, 67848169, 75151561, 76405081, 142396489, 175006441, 185313769, 198443569, 253541929, 352425529, 369062521, 386554921, 414896161, 499477801, 526105969, 684921241, 775678201
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2018

Keywords

Comments

Intersection of A023194 and A279096.
All terms are squares.

Examples

			4 is in the sequence because sigma(4) = 7 and sigma(4^2) = 31 are both primes.
		

Crossrefs

Cf. A000203 (sigma(n)), A055638 (sigma(n^2) is prime), A232444 (sigma(n) and sigma(n^2) are primes), A279094 (the smallest k such that sigma(k^n) is prime), A279096 (sigma(n^3) is prime), A299147 (sigma(n), sigma(n^2) and sigma(n^3) are primes).

Programs

  • Magma
    [n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^3))];
    
  • Mathematica
    Select[Range[10^4], AllTrue[DivisorSigma[1, #] & /@ {#, #^3}, PrimeQ] &] (* Michael De Vlieger, Feb 05 2018 *)
  • PARI
    isok(n) = isprime(sigma(n)) && isprime(sigma(n^3)); \\ Michel Marcus, Feb 05 2018

A232445 Numbers n such that sigma(n) and sigma(n^2) are squares.

Original entry on oeis.org

1, 11177320, 182937066, 159839399818, 166474679436
Offset: 1

Views

Author

Alex Ratushnyak, Nov 24 2013

Keywords

Comments

Intersection of A006532 and A008847.
sigma(a(6)) >= 10^12. - Hiroaki Yamanouchi, Sep 26 2014

Examples

			sigma(a(2)) = (64*9*5*2)^2 and sigma(a(2)^2) = (3*7*13*19*31*127)^2.
sigma(a(3)) = (64*9*5*7)^2 and sigma(a(3)^2) = (3*7*13*37*61*499)^2.
sigma(a(4)) = (256*9*5*47)^2 and sigma(a(4)^2) = (3*49*13*19*37*43*61*67)^2.
sigma(a(5)) = (16*3*7*121*17)^2 and sigma(a(5)^2) = (3*49*13*31*61*109*757)^2.
		

Crossrefs

Cf. A000203 (sigma: sum of divisors of n), A006532, A008847, A232444.

Programs

  • PARI
    isok(n) = issquare(sigma(n)) && issquare(sigma(n^2)); \\ Michel Marcus, Sep 24 2014

Extensions

a(4) from Hiroaki Yamanouchi, Sep 24 2014
a(5) from Hiroaki Yamanouchi, Sep 26 2014
Showing 1-3 of 3 results.