cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A299147 Numbers k such that sigma(k), sigma(k^2) and sigma(k^3) are primes.

Original entry on oeis.org

4, 64, 289, 253541929, 499477801, 1260747049, 14450203681, 25391466409, 256221229489, 333456586849, 341122579249, 459926756041, 911087431081, 928731181849, 1142288550841, 2880002461249, 2923070670601, 3000305515321, 4103999343889, 4123226708329, 4258977385441
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2018

Keywords

Comments

All terms are squares (proof in A023194).
Sequence {b(n)} of the smallest numbers m such that sigma(m^k) are primes for all k = 1..n: 2, 2, 4, ... (if fourth term exists, it must be greater than 10^16).

Examples

			4 is in the sequence because all sigma(4) = 7, sigma(4^2) = 31 and sigma(4^3) = 127 are primes.
		

Crossrefs

Subsequence of A232444.

Programs

  • Magma
    [n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^2)) and IsPrime(SumOfDivisors(n^3))];
    
  • Maple
    N:= 10^14: # to get all terms <= N
    Res:= NULL:
    p:= 1:
    do
      p:= nextprime(p);
      if p^2 > N then break fi;
      for k from 2 by 2 while p^k <= N do
        if isprime(k+1) and isprime(2*k+1) and isprime(3*k+1) then
          q1:= (p^(k+1)-1)/(p-1);
          q2:= (p^(2*k+1)-1)/(p-1);
          q3:= (p^(3*k+1)-1)/(p-1);
          if isprime(q1) and isprime(q2) and isprime(q3) then
            Res:= Res, p^k;
          fi
        fi
      od
    od:
    sort([Res]); # Robert Israel, Feb 22 2018
  • Mathematica
    k = 1; A299147 = {}; While[k < 4260000000000, If[Union@ PrimeQ@ DivisorSigma[1, {k, k^2, k^3}] == {True}, AppendTo[A299147, k]]; k++]; A299147 (* Robert G. Wilson v, Feb 10 2018 *)
  • PARI
    isok(n) = isprime(sigma(n)) && isprime(sigma(n^2)) && isprime(sigma(n^3)); \\ Michel Marcus, Feb 05 2018
Showing 1-1 of 1 results.