A232448 Indices of Belphegor primes: numbers k such that the decimal number 1 0...0(k 0's) 666 0...0(k 0's) 1 (i.e., A232449(k)) is prime.
0, 13, 42, 506, 608, 2472, 2623, 28291, 181298
Offset: 1
Examples
0 is in the sequence because A232449(0) = 16661 is prime. 13 is in the sequence because A232449(13) = 1000000000000066600000000000001 is prime. For k = 1..12, A232449(k) is composite. 42 is in the sequence because 10000000000000000000000000000000000000000006660000000000000000000000000000\ 000000000000001 is a (probable) prime. - _N. J. A. Sloane_, Oct 16 2018
Links
- Tony Padilla and Brady Haran, The Most Evil Number, Numberphile video (2018)
- Clifford A. Pickover, Belphegor's Prime: 1000000000000066600000000000001
- Simon Singh, Homer Simpson's scary math problems. BBC News. Retrieved 31 October 2013.
- Eric Weisstein's World of Mathematics, Belphegor Prime
- Eric Weisstein's World of Mathematics, Integer Sequence Primes
- Wikipedia, Belphegor's prime
Programs
-
Mathematica
lst = {}; Do[p = 10^(2*n + 4) + 666*10^(n + 1) + 1; If[PrimeQ[p], Print[n]], {n, 0, 3000}]; (* Nathaniel Johnston, Nov 25 2013 *)
-
PARI
default(factor_proven,1); Belphegor(k)=(10^(k+3)+666)*10^(k+1)+1; for (an=0,10000, if (isprime(Belphegor(an)),print("Found: ",an), if (an%100==0,print("Tested up to: ",an))) );
Formula
a(n) = A156166(n) - 1.
Extensions
a(9) based on A156166 from Eric W. Weisstein, Jan 24 2017
Offset changed to 1 by Jon E. Schoenfield, Mar 23 2021
Comments