A232464 Number of compositions of n avoiding the pattern 1111.
1, 1, 2, 4, 7, 15, 26, 52, 93, 173, 310, 556, 1041, 1789, 3098, 5620, 9725, 16377, 28764, 48518, 82889, 137161, 237502, 390084, 646347, 1055975, 1774036, 2907822, 4698733, 7581093, 12381660, 19891026, 32113631, 51110319, 80777888, 130175410, 204813395
Offset: 0
Keywords
Examples
a(5) = 15: [5], [4,1], [3,2], [2,3], [1,4], [1,2,2], [2,1,2], [1,1,3], [3,1,1], [2,2,1], [1,3,1], [1,2,1,1], [2,1,1,1], [1,1,2,1], [1,1,1,2]. a(6) = 26: [6], [3,3], [5,1], [4,2], [2,4], [1,5], [4,1,1], [3,2,1], [2,3,1], [1,4,1], [3,1,2], [2,2,2], [1,3,2], [1,2,3], [2,1,3], [1,1,4], [1,2,2,1], [2,1,2,1], [1,1,3,1], [3,1,1,1], [2,2,1,1], [1,3,1,1], [1,2,1,2], [2,1,1,2], [1,1,2,2], [1,1,1,3].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3000
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(b(n-i*j, i-1, p+j)/j!, j=0..min(n/i, 3)))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..50);
-
Mathematica
f[list_]:=Apply[And,Table[Count[list,i]<4,{i,1,Max[list]}]]; g[list_]:=Length[list]!/Apply[Times,Table[Count[list,i]!,{i,1,Max[list]}]]; a[n_] := If[n == 0, 1, Total[Map[g, Select[IntegerPartitions[n], f]]]]; Table[a[n], {n, 0, 40}] (* Geoffrey Critzer, Nov 25 2013, updated by Jean-François Alcover, Nov 20 2023 *)
Comments