cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232464 Number of compositions of n avoiding the pattern 1111.

Original entry on oeis.org

1, 1, 2, 4, 7, 15, 26, 52, 93, 173, 310, 556, 1041, 1789, 3098, 5620, 9725, 16377, 28764, 48518, 82889, 137161, 237502, 390084, 646347, 1055975, 1774036, 2907822, 4698733, 7581093, 12381660, 19891026, 32113631, 51110319, 80777888, 130175410, 204813395
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2013

Keywords

Comments

Number of compositions of n into parts with multiplicity <= 3.

Examples

			a(5) = 15: [5], [4,1], [3,2], [2,3], [1,4], [1,2,2], [2,1,2], [1,1,3], [3,1,1], [2,2,1], [1,3,1], [1,2,1,1], [2,1,1,1], [1,1,2,1], [1,1,1,2].
a(6) = 26: [6], [3,3], [5,1], [4,2], [2,4], [1,5], [4,1,1], [3,2,1], [2,3,1], [1,4,1], [3,1,2], [2,2,2], [1,3,2], [1,2,3], [2,1,3], [1,1,4], [1,2,2,1], [2,1,2,1], [1,1,3,1], [3,1,1,1], [2,2,1,1], [1,3,1,1], [1,2,1,2], [2,1,1,2], [1,1,2,2], [1,1,1,3].
		

Crossrefs

Cf. A001935 (partitions avoiding 1111), A032020 (pattern 11), A232432 (pattern 111), A232394 (consecutive pattern 1111).
Column k=3 of A243081.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j)/j!, j=0..min(n/i, 3))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);
  • Mathematica
    f[list_]:=Apply[And,Table[Count[list,i]<4,{i,1,Max[list]}]];
    g[list_]:=Length[list]!/Apply[Times,Table[Count[list,i]!,{i,1,Max[list]}]];
    a[n_] := If[n == 0, 1, Total[Map[g, Select[IntegerPartitions[n], f]]]];
    Table[a[n], {n, 0, 40}] (* Geoffrey Critzer, Nov 25 2013, updated by Jean-François Alcover, Nov 20 2023 *)