cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232475 Number of preferential arrangements of n labeled elements when at least k=4 elements per rank are required.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 71, 253, 673, 1585, 38149, 277707, 1402831, 5923503, 85577571, 937629969, 7475614341, 48939413477, 587610659505, 7906296686903, 87384175023995, 804959532778571, 9729015122635103, 144711323234918941, 2009073351016603121
Offset: 0

Views

Author

N. J. A. Sloane, Nov 27 2013

Keywords

Crossrefs

Cf. column k=4 of A245732.

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, add(b(n-j)/j!, j=4..n)) end:
    a:= n-> n!*b(n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 29 2014
  • Mathematica
    CoefficientList[Series[1/(2 + x - E^x + x^2/2 + x^3/6),{x,0,20}],x]*Range[0,20]! (* Vaclav Kotesovec, Aug 02 2014 *)

Formula

E.g.f.: 1/(2 + x - exp(x) + x^2/2 + x^3/6). - Vaclav Kotesovec, Aug 02 2014
a(n) ~ n! / ((1+r^3/6) * r^(n+1)), where r = 1.97615974210650519398... is the root of the equation 2 + r - exp(r) + r^2/2 + r^3/6 = 0. - Vaclav Kotesovec, Aug 02 2014
a(0) = 1; a(n) = Sum_{k=4..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Feb 09 2020

Extensions

More terms from Alois P. Heinz, Jul 29 2014