A232497 Number of tilings of a 4 X n rectangle using L and Z tetrominoes.
1, 0, 2, 6, 14, 32, 102, 238, 652, 1696, 4480, 11658, 30870, 80644, 212292, 556858, 1463390, 3840686, 10090218, 26490280, 69575414, 182693434, 479789138, 1259906496, 3308668718, 8688615148, 22817011182, 59918425698, 157349755400, 413208421354, 1085110433096
Offset: 0
Examples
a(3) = 6: ._._._. ._._._. ._._._. ._._._. ._._._. ._._._. | .___| |___. | | |_. | | ._| | | .___| |___. | |_| ._| |_. |_| |_. | | | | ._| |_| | | | | |_| |___| | | |___| | |_|_| |_|_| | | ._| | | |_. | |_____| |_____| |_____| |_____| |_|___| |___|_|.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
- Wikipedia, Tetromino
- Index entries for linear recurrences with constant coefficients, signature (0,5,7,2,-13,-13,-6,-6,0,-4,0,-2).
Programs
-
Maple
a:= n-> coeff(series(-(x^6-x^5-2*x^4+x^3+3*x^2-1)/ (2*x^12+4*x^10+6*x^8+6*x^7+13*x^6+13*x^5-2*x^4-7*x^3-5*x^2+1), x, n+1), x, n); seq(a(n), n=0..40);
Formula
G.f.: -(x^6-x^5-2*x^4+x^3+3*x^2-1) / (2*x^12 +4*x^10 +6*x^8 +6*x^7 +13*x^6 +13*x^5 -2*x^4 -7*x^3 -5*x^2+1).