cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232530 Least square m^2 such that for all primes p where p and p-n are quadratic residues (mod 4*n), (m^2)*p can be written as x^2+n*y^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 9, 1, 1, 9, 1, 4, 4, 1, 1, 9, 1, 1, 9, 4, 1, 9, 1, 16, 4, 1, 25, 4, 4, 1, 9, 16, 1, 81, 1, 4, 9, 1, 25, 64, 1, 25, 9, 4, 4, 9, 9, 16, 9, 1, 1, 36, 1, 25, 81, 9, 4, 9, 25, 4, 36, 25, 1, 144, 1, 49, 81, 4, 16, 9, 1, 64, 9, 9, 49, 36, 4, 1, 81, 16, 1, 225, 9, 4, 9, 1, 625, 64, 4, 49
Offset: 1

Views

Author

V. Raman, Nov 25 2013

Keywords

Comments

If n is a convenient number (A000926) then a(n) = 1.
m^2 is also the smallest positive square that can be generated by using all the inequivalent primitive quadratic forms of discriminant = -4n.

Examples

			For n = 11, all primes p such that p such that p is a quadratic residue (mod 4*n) and p-n is a quadratic residue (mod 4*n) are either of the form x^2+11*y^2 or 3*x^2+2*x*y+4*y^2.
4*(x^2+11*y^2) = (2*x)^2+11*(2*y)^2, 4*(3*x^2+2*x*y+4*y^2) = (x+4*y)^2+11*x^2. Also, 4 is the smallest square to satisfy this condition. So, a(11) = 4.
For n = 14, all primes p such that p such that p is a quadratic residue (mod 4*n) and p-n is a quadratic residue (mod 4*n) are either of the form x^2+14*y^2 or 2*x^2+7*y^2.
9*(x^2+14*y^2) = (3*x)^2+14*(3*y)^2, 9*(2*x^2+7*y^2) = (2*x+7*y)^2+14*(x-y)^2 = (2*x-7*y)^2+14*(x+y)^2. Also, 9 is the smallest square to satisfy this condition. So, a(14) = 9.
For n = 17, all primes p such that p such that p is a quadratic residue (mod 4*n) and p-n is a quadratic residue (mod 4*n) are either of the form x^2+17*y^2 or 2*x^2+2*x*y+9*y^2.
9*(x^2+17*y^2) = (3*x)^2+17*(3*y)^2, 9*(2*x^2+2*x*y+9*y^2) = (x+9*y)^2+17*x^2. Also, 9 is the smallest square to satisfy this condition. So, a(17) = 9.
For n = 19, all primes p such that p such that p is a quadratic residue (mod 4*n) and p-n is a quadratic residue (mod 4*n) are either of the form x^2+19*y^2 or 4*x^2+2*x*y+5*y^2.
4*(x^2+19*y^2) = (2*x)^2+19*(2*y)^2, 4*(4*x^2+2*x*y+5*y^2) = (4*x+y)^2+19*y^2. Also, 4 is the smallest square to satisfy this condition. So, a(19) = 4.
For n = 20, all primes p such that p such that p is a quadratic residue (mod 4*n) and p-n is a quadratic residue (mod 4*n) are either of the form x^2+20*y^2 or 4*x^2+5*y^2.
4*(x^2+20*y^2) = (2*x)^2+20*(2*y)^2, 4*(4*x^2+5*y^2) = (4*x)^2+20*y^2. Also, 4 is the smallest square to satisfy this condition. So, a(20) = 4.
		

Crossrefs

Formula

a(n)=A232529(n)^2.