A232550 Number of distinct primitive quadratic forms of discriminant = -4n that exist such that every prime p for which p is a quadratic residue (mod 4n) or p-n is a quadratic residue (mod 4n) can be represented by one of them.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 5, 1, 2, 3, 2, 2, 2, 2, 2, 3, 2, 1, 4, 1, 2, 3, 2, 2, 2, 1, 3, 2, 2, 2, 5, 2, 1, 3, 2, 1, 4, 2, 2, 2, 1, 3, 3, 2, 2, 3, 2, 2
Offset: 1
Examples
If n is a convenient number (A000926), then the only such available quadratic form is x^2+n*y^2. For n = 11, every prime that is congruent to {0, 1, 3, 4, 5, 9} mod 11 can be represented by either of the two distinct primitive quadratic forms of discriminant = -44: x^2+11*y^2 or 3*x^2+2*x*y+4*y^2. For n = 14, every prime that is congruent to {1, 2, 7, 9, 15, 23, 25, 39} mod 56 can be represented by either of the two distinct primitive quadratic forms of discriminant = -56: x^2+14*y^2 or 2*x^2+7*y^2. For n = 17, every prime that is congruent to {1, 2, 9, 13, 17, 21, 25, 33, 49, 53} mod 68 can be represented by either of the two distinct primitive quadratic forms of discriminant = -68: x^2+17*y^2 or 2*x^2+2*x*y+9*y^2. For n = 19, every prime that is congruent to {0, 1, 4, 5, 6, 7, 9, 11, 16, 17} mod 19 can be represented by either of the two distinct primitive quadratic forms of discriminant = -76: x^2+19*y^2 or 4*x^2+2*x*y+5*y^2. For n = 20, every prime that is congruent to {1, 5, 9} mod 20 can be represented by either of the two distinct primitive quadratic forms of discriminant = -80: x^2+20*y^2 or 4*x^2+5*y^2.
Comments