A232534 Number of subsets of {1,...,n} containing n and having at least one set partition into 3 blocks with equal element sum.
0, 0, 0, 0, 1, 2, 5, 12, 29, 63, 146, 329, 722, 1613, 3505, 7567, 16119, 34194, 71455, 148917, 307432, 631816, 1290905, 2628736, 5330368
Offset: 1
Examples
a(5) = 1: {1,2,3,4,5}-> 14/23/5. a(6) = 2: {1,2,4,5,6}-> 15/24/6, {1,2,3,4,5,6}-> 16/25/34. a(7) = 5: {2,3,4,5,7}-> 25/34/7, {1,3,4,6,7}-> 16/34/7, {1,2,5,6,7}-> 16/25/7, {1,2,3,5,6,7}-> 17/26/35, {2,3,4,5,6,7}-> 27/36/45. a(8) = 12: {2,3,5,6,8}, {1,3,5,7,8}, {1,2,6,7,8}, {2,3,4,6,7,8}, {1,2,3,4,5,7,8}, {1,3,4,5,6,8}, {1,2,4,5,6,7,8}, {1,2,3,6,7,8}, {3,4,5,6,7,8}, {1,2,4,5,7,8}, {1,2,3,4,5,6,7,8}, {1,2,3,4,6,8}.
Programs
-
Maple
b:= proc(n, k, i) option remember; local m; m:= i*(i+1)/2; `if`(k>n, b(k, n, i), `if`(i<1, `if`(n=0 and k=0, {0}, {}), `if`(k>=0 and n+k>m or k<0 and n-2*k>m, {}, b(n, k, i-1) union map(p-> p+x^i, b(n+i, k+i, i-1) union b(n-i, k, i-1) union b(n, k-i, i-1))))) end: a:= n-> nops(b(n, n, n-1)): seq(a(n), n=1..15);
-
Mathematica
b[n_, k_, i_] := b[n, k, i] = Module[{m = i*(i + 1)/2}, If[k > n, b[k, n, i], If[i < 1, If[n == 0 && k == 0, {0}, {}], If[k >= 0 && n + k > m || k < 0 && n - 2*k > m, {}, b[n, k, i - 1] ~Union~ Map[# + x^i &, b[n + i, k + i, i - 1] ~Union~ b[n - i, k, i - 1] ~Union~ b[n, k - i, i - 1]]]]]]; a[n_] := Length[b[n, n, n - 1]]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, May 25 2018, translated from Maple *)
Extensions
a(25) from Alois P. Heinz, Mar 26 2016
Comments