cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232553 Maximal values of permanent on (0,1) square matrices of order n with row and column sums 3.

Original entry on oeis.org

6, 9, 13, 36, 54, 81, 216, 324, 486, 1296, 1944, 2916, 7776, 11664, 17496, 46656, 69984, 104976, 279936, 419904, 629856, 1679616, 2519424, 3779136, 10077696, 15116544, 22674816, 60466176, 90699264, 136048896, 362797056, 544195584, 816293376, 2176782336, 3265173504, 4897760256
Offset: 3

Views

Author

Vladimir Shevelev, Nov 26 2013

Keywords

Comments

a(n) is attained on the subset of symmetric matrices with the main diagonal all 1's.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 6}, {6, 9, 13, 36, 54, 81}, 50] (* Paolo Xausa, Aug 08 2025 *)
  • PARI
    a(n) = h = n%3; floor(6^((n-h)/3)*(3/2)^h); \\ Michel Marcus, Nov 26 2013
    
  • PARI
    Vec(x^3*(6+9*x+13*x^2+3*x^5)/(1-6*x^3) + O(x^50)) \\ Colin Barker, May 27 2016

Formula

a(n) = floor(6^((n-h)/3)*(3/2)^h), where h=0,1 or 2, such that n == h (mod 3).
From Colin Barker, May 27 2016: (Start)
a(n) = 6*a(n-3) for n>8. [Corrected by Paolo Xausa, Aug 08 2025]
G.f.: x^3*(6+9*x+13*x^2+3*x^5) / (1-6*x^3). (End)