A232567 Number of non-equivalent binary n X n matrices with two nonadjacent 1's.
0, 1, 6, 17, 43, 84, 159, 262, 426, 635, 940, 1311, 1821, 2422, 3213, 4124, 5284, 6597, 8226, 10045, 12255, 14696, 17611, 20802, 24558, 28639, 33384, 38507, 44401, 50730, 57945, 65656, 74376, 83657, 94078, 105129, 117459, 130492, 144951, 160190, 177010
Offset: 1
Examples
There are a(3) = 6 non-equivalent 3 X 3 matrices with two nonadjacent 1's (and no other 1's): [1 0 0] [0 1 0] [1 0 0] [0 1 0] [1 0 1] [1 0 0] |0 0 0| |0 0 0| |0 1 0| |1 0 0| |0 0 0| |0 0 1| [0 0 1] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
Links
- Heinrich Ludwig, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1)
Programs
-
PARI
x='x+O('x^99); concat(0, Vec(x*(1+x+x^2)*(1+3*x-x^2+x^3)/((1+x)^3*(1-x)^5))) \\ Altug Alkan, Mar 14 2018
Formula
a(n) = (n^4 + 2*n^2 - 4*n)/16 if n is even; a(n) = (n^4 + 4*n^2 - 8*n + 3)/16 if n is odd.
G.f.: x * (1 + x + x^2)*(1 + 3*x - x^2 + x^3) / ((1 + x)^3*(1 - x)^5). - Bruno Berselli, Nov 28 2013
Comments