A232602 a(n) = Sum_{k=0..n} k^p*q^k, where p=3, q=-2.
0, -2, 30, -186, 838, -3162, 10662, -33242, 97830, -275418, 748582, -1977306, 5100582, -12897242, 32060454, -78531546, 189903910, -454052826, 1074770982, -2521320410, 5867287590, -13554437082
Offset: 0
Examples
a(3) = 0^3*2^0 - 1^3*2^1 + 2^3*2^2 - 3^3*2^3 = -186.
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..1000
- S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), DOI 10.3247/SL1Math06.002, Section V.
- Index entries for linear recurrences with constant coefficients, signature (-7,-16,-8,16,16).
Crossrefs
Programs
-
Magma
[2*(1 -(-2)^n*(1 +3*n -9*n^2 -9*n^3))/27: n in [0..35]]; // G. C. Greubel, Mar 31 2021
-
Maple
A232602:= n-> 2*(1 -(-2)^n*(1 +3*n -9*n^2 -9*n^3))/27; seq(A232602(n), n=0..35); # G. C. Greubel, Mar 31 2021
-
Mathematica
LinearRecurrence[{-7,-16,-8,16,16}, {0,-2,30,-186,838}, 40] (* G. C. Greubel, Mar 31 2021 *)
-
PARI
a(n)=((-1)^n*2^(n+1)*(27*n^3+27*n^2-9*n-3)+6)/81;
-
Sage
[2*(1 -(-2)^n*(1 +3*n -9*n^2 -9*n^3))/27 for n in (0..35)] # G. C. Greubel, Mar 31 2021
Formula
a(n) = 2*(1 - (-2)^n*(1 +3*n -9*n^2 -9*n^3))/27.
G.f.: -2*x*(1-8*x+4*x^2) / ( (1-x)*(1+2*x)^4 ). - R. J. Mathar, Nov 23 2014
E.g.f.: (2/27)*(exp(x) - (1 +30*x -144*x^2 +72*x^3)*exp(-2*x)). - G. C. Greubel, Mar 31 2021
a(n) = - 7*a(n-1) - 16*a(n-2) - 8*a(n-3) + 16*a(n-4) + 16*a(n-5). - Wesley Ivan Hurt, Mar 31 2021