A232604 a(n) = 2^n * Sum_{k=0..n} k^p*q^k, where p=3, q=-1/2.
0, -1, 6, -15, 34, -57, 102, -139, 234, -261, 478, -375, 978, -241, 2262, 1149, 6394, 7875, 21582, 36305, 80610, 151959, 314566, 616965, 1247754, 2479883, 4977342, 9935001, 19891954, 39759519, 79546038, 159062285
Offset: 0
Examples
a(3) = 2^3 * (0^3/2^0 - 1^3/2^1 + 2^3/2^2 - 3^3/2^3) = 0-4+16-27 = -15.
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..1000
- S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), DOI 10.3247/SL1Math06.002, Section V.
- Index entries for linear recurrences with constant coefficients, signature (-2,2,8,7,2).
Crossrefs
Programs
-
Magma
[(2^(n+1) + (-1)^n*(9*n^3 +18*n^2 +6*n -2))/27: n in [0..35]]; // G. C. Greubel, Mar 31 2021
-
Maple
A232604:= n-> (2^(n+1) +(-1)^n*(9*n^3 +18*n^2 +6*n -2))/27; seq(A232604(n), n=0..30); # G. C. Greubel, Mar 31 2021
-
Mathematica
LinearRecurrence[{-2,2,8,7,2}, {0,-1,6,-15,34}, 35] (* G. C. Greubel, Mar 31 2021 *)
-
PARI
a(n)=(2^(n+1)+(-1)^n*(9*n^3+18*n^2+6*n-2))/27;
-
Sage
[(2^(n+1) + (-1)^n*(9*n^3 +18*n^2 +6*n -2))/27 for n in (0..35)] # G. C. Greubel, Mar 31 2021
Formula
a(n) = (2^(n+1) + (-1)^n*(9*n^3+18*n^2+6*n-2))/27.
G.f.: x*(1-4*x+x^2) / ( (2*x-1)*(1+x)^4 ). - R. J. Mathar, Nov 23 2014
E.g.f.: (1/27)*(2*exp(2*x) - (2 +33*x -45*x^2 +9*x^3)*exp(-x)). - G. C. Greubel, Mar 31 2021
a(n) = - 2*a(n-1) + 2*a(n-2) + 8*a(n-3) + 7*a(n-4) + 2*a(n-5). - Wesley Ivan Hurt, Mar 31 2021
Comments