A232624 Coefficient array for the minimal polynomials of 2*cos(2*Pi/n) for n >= 1.
-2, 1, 2, 1, 1, 1, 0, 1, -1, 1, 1, -1, 1, -1, -2, 1, 1, -2, 0, 1, 1, -3, 0, 1, -1, -1, 1, 1, 3, -3, -4, 1, 1, -3, 0, 1, -1, 3, 6, -4, -5, 1, 1, 1, -2, -1, 1, 1, 4, -4, -1, 1, 2, 0, -4, 0, 1, 1, -4, -10, 10, 15, -6, -7, 1, 1, -1, -3, 0, 1, 1, 5, -10, -20, 15, 21, -7, -8, 1, 1, 5, 0, -5, 0, 1, 1, -8, 8, 6, -6, -1, 1, -1, 3, 3, -4, -1, 1
Offset: 1
Examples
The table a(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 ... 1: -2 1 2: 2 1 3: 1 1 4: 0 1 5: -1 1 1 6: -1 1 7: -1 -2 1 1 8: -2 0 1 9: 1 -3 0 1 10: -1 -1 1 11: 1 3 -3 -4 1 1 12: -3 0 1 13: -1 3 6 -4 -5 1 1 14: 1 -2 -1 1 15: 1 4 -4 -1 1 16: 2 0 -4 0 1 17: 1 -4 -10 10 15 -6 -7 1 1 18: -1 -3 0 1 19: 1 5 -10 -20 15 21 -7 -8 1 1 20: 5 0 -5 0 1 ... MPR2(14, x) = C(7, x) = 1 - 2*x - x^2 + x^3. MPR2(7, x) = (x - (-2 + z^2))*(x - (-2 + (-1 - z + z^2)^2))* (x - (-2 + (2 - z^2)^2)), with z = rho(7). Expanded and reduced with C(7, z) = 0 this becomes finally MPR2(7, x) = -1 - 2*x + x^2 + x^3. MPR2(7, x) = -C(7, -x). - _Wolfdieter Lang_, Apr 12 2018
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..14000 (rows 1 <= n <= 300, flattened)
- Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
Crossrefs
Programs
-
Mathematica
ro[n_] := (MPR2 = CoefficientList[p = MinimalPolynomial[2*Cos[2*(Pi/n)], x], x]; MPR2); Flatten[Table[ro[n], {n, 30}]] (* Jianing Song, Jul 09 2019 *)
Formula
a(n,m) = [x^m] MPR2(n, x), n >= 1, m=0, 1, ..., deg(n), with MPR2(n, x) the (monic) minimal polynomials of 2*cos(2*Pi/n), explained in a comment above. The degree is deg(1) = deg(2) = 1, deg(n) = phi(n)/2 = A023022(n), n >= 3 (phi is the Euler totient function A000010).
From Jianing Song, Jul 09 2019: (Start)
MPR2(n, x) = Product_{0<=m<=n/2, gcd(m, n)=1} (x - 2*cos(2*Pi*m/n)).
If 4 divides n, then MPR2(n, x) = Product_{k|(n/2)} U((n/2)/k, x)^mu(k), where U(n, x) is the polynomial defined in comment and mu = A008683. For odd n, MPR2(n, x)*MPR2(2n, x) = Product_{k|n} U(n/k, x)^mu(k).
If 4 divides n and n > 4, then a(n,2k+1) = 0, that is, MPR2(n, x) contains even powers of x only.
For odd n > 1, a(2n,k) = a(n,k)*(-1)^(A023022(n)-k). (End)
Comments