A309040 a(n) = MPR2(n, 4), where MPR2(n, x) is the (monic) minimal polynomial of 2*cos(2*Pi/n) as defined in A232624.
2, 6, 5, 4, 19, 3, 71, 14, 53, 11, 989, 13, 3691, 41, 145, 194, 51409, 51, 191861, 181, 2017, 571, 2672279, 193, 524899, 2131, 140453, 2521, 138907099, 241, 518408351, 37634, 391249, 29681, 5352481, 2701, 26947261171, 110771, 5449393, 37441, 375326930089
Offset: 1
Keywords
Examples
MPR2(15, x) = x^4 - x^3 - 4x^2 + 4x + 1, so a(15) = MPR2(15, 4) = 145.
Programs
-
Mathematica
a[n_] := (p = MinimalPolynomial[2*Cos[2*(Pi/n)], 4]; p); Table[a[n], {n, 1, 40}]
Formula
By the comment in A232624, we have: A001353(n) = Product_{k|2n, k>=3} MPR2(k, 4) = Product_{k|2n, k>=3} a(k).
a(n) = Product_{0<=m<=n/2, gcd(m, n)=1} (4 - 2*cos(2Pi*m/n)).
If 4 divides n, then a(n) = Product_{k|(n/2)} A001353((n/2)/k)^mu(k) = A306825(n/2), where mu = A008683. For odd n > 1, a(n)*a(2n) = Product_{k|n} A001353(n/k)^mu(k) = A306825(n). [Corrected by Jianing Song, Oct 31 2024]
Let b(n) = MPR2(n, -4)*(-1)^A023022(n) for n > 2, then a(n) = b(2n) for odd n, a(n) = b(n/2) for n congruent to 4 modulo 2, a(n) = b(n) for n divisible by 4.
Comments