cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A152396 Let f(M,k) denote the decimal concatenation of k numbers starting with M: M | M-1 | M-2 | ... | M-k+1, k > 1. Then a(n) is the smallest M such that for all m in {1,..,n} an m-th prime occurs as f(M,k) for the smallest possible k, order prioritized m = 1 through n.

Original entry on oeis.org

4, 10, 1000, 21910420, 1113475000, 67483920430
Offset: 1

Views

Author

James G. Merickel, Oct 20 2009

Keywords

Comments

The sequence of k values is 2, 4, 8, 10, 14, 20, 28, 32, 34, 40, 50, etc. a(n) is necessarily congruent to 10 modulo 30 starting with n=4 (and is coincidentally so for n=2 and 3). Each successive unknown term's existence is only conjectural, but is supported by standard heuristics. The values in the lead sentence come through considerations modulo the smallest primes.
Concatenation of 22 numbers is ruled out by consideration modulo 11 in concert with the prior need for the stem to be 10 mod 30: A prime concatenation of 22 values necessarily involves passage from one length number to another, with a power of 10 not leading. Beginning with a(11), however, with each time a multiple of 22 for the number of concatenated values is passed there is a measure of uncertainty. Theoretically, it seems a(11) could include for largest prime a concatenation of 44 (rather than 50) values, but with these primes very sparse it is a near certainty heuristically that this is not so. Mathematically, a conjectured a(11) would have a higher bar for strict proof than a(n) for n < 11, and the same holds repeatedly for even less accessible terms.
The alternative sequence where only the rapidity of arrival of the n-th prime determines a(n) (k minimal for the largest prime, with no constraint on k for the smaller prime concatenations) necessarily shares its first 5 terms in common with this one. It also shares its 6th by virtue of the fact that this sequence's a(6) is the only value less than 10^12 producing its 6th prime with the attachment of the 20th value, whether alternative length possibilities for primes are allowed or not (i.e., the first cases giving 5 other smaller primes -- in addition to one of 20 concatenated values -- where there is a prime concatenation of 16 values, in place of one of either 2 or 8 values, are both at least this large). However, it does necessarily differ at a(7) and a(8) (but then not necessarily at a(9)), as the resolution of the theoretical problem for the twin sequence is given for a(7) by the possibility of 5, 7, 11, 13, 17, 23 and 25 numbers being concatenated to give primes, and for a(8) by the replacement of 2 concatenated values with concatenations of both 16 and 26 of them (with result that a(8) for this alternative sequence appears already with concatenation of 28 values, while here that corresponds to a(7)).
This necessity to distinguish between whether or not only the last of the primes comes as quickly as possible does not arise as an issue in the situation where the number itself is required to be prime (A172257). [Comments re-edited from Feb 2014] - James G. Merickel, Aug 07 2015
The definition is not clear to me. - N. J. A. Sloane, Aug 11 2015

Examples

			43 is prime while 32 and 21 are not, so a(1)=4; 109 and 10987 are both prime, and like concatenations for values 4 through 9 do not produce 2 primes, so a(2)=10; 1000999, 1000999998997 and 1000999998997996995994993 are all prime and no smaller value produces 3 primes so quickly, so a(3)=1000.
		

Crossrefs

Extensions

Two more terms from James G. Merickel, Dec 09 2009
6th term added by James G. Merickel, Jan 29 2010
Title changed by James G. Merickel, Feb 18 2014
Title changed by James G. Merickel, Aug 06 2015

A152397 Similar to A152396, but here the requirement is for finding any n primes, not necessarily from the shortest concatenations.

Original entry on oeis.org

4, 10, 73, 100, 8338
Offset: 1

Views

Author

James G. Merickel, Oct 20 2009

Keywords

Comments

Tentatively, as of Dec 2012, the likely value of a(6) is 20968. A noteworthy fact, perhaps, is that were this sequence to limit itself to non-titanic primes (ones under 10^999), then it would look the same to the point shown and have the stated tentative value for a(6) as its a(5), despite there being a number of smaller values eventually reaching a 5th prime. - James G. Merickel, Dec 06 2012
a(5)=8338 has not been determined with complete certainty, but is likely correct (See A232657). a(6)=20968 has fairly convincing support, but even finding a good upper bound for a(7) is hard. - James G. Merickel, Jun 14 2014

Examples

			21, 32, and 321 are all composite, and 43 is prime. So a(1)=4. Then the first stem resulting in 2 primes is 10, with 109 and 10987 both prime. So a(2)=10. 73 produces 4 primes in this way if improper concatenation (including 73 itself) is included, but it is not. Since stem values from 11 through 72 never produce more than 2 primes properly, a(3)=73.
		

Crossrefs

Extensions

a(5) added by James G. Merickel, Feb 06 2014
Showing 1-2 of 2 results.