cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232665 Number of compositions of 2n such that the largest multiplicity of parts equals n.

Original entry on oeis.org

1, 1, 4, 5, 21, 49, 176, 513, 1720, 5401, 17777, 57421, 188657, 617177, 2033176, 6697745, 22139781, 73262233, 242931322, 806516561, 2681475049, 8925158441, 29740390673, 99196158145, 331163178476, 1106489052969, 3699881730901, 12380449027325, 41454579098853
Offset: 0

Views

Author

Alois P. Heinz, Nov 27 2013

Keywords

Comments

a(n) = A238342(2n,n) = A242447(2n,n).

Examples

			a(1) = 1: [2].
a(2) = 4: [2,2], [1,2,1], [2,1,1], [1,1,2].
a(3) = 5: [2,2,2], [1,3,1,1], [1,1,3,1], [3,1,1,1], [1,1,1,3].
a(4) = 21: [2,2,2,2], [1,1,4,1,1], [4,1,1,1,1], [1,4,1,1,1], [1,1,1,4,1], [1,1,1,1,4], [1,2,1,1,1,2], [2,1,1,1,1,2], [2,1,2,1,1,1], [1,2,2,1,1,1],[1,2,1,2,1,1], [2,1,1,2,1,1], [1,2,1,1,2,1], [2,1,1,1,2,1],[1,1,2,1,2,1], [1,1,2,2,1,1], [2,2,1,1,1,1], [1,1,1,2,2,1], [1,1,2,1,1,2], [1,1,1,2,1,2], [1,1,1,1,2,2].
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
         `if`(n<5, [1, 1, 4, 5, 21][n+1],
          ((n-1)*(14911*n^4 -102036*n^3 +249203*n^2
           -252880*n +87794) *a(n-1)
          +(27528*n^5 -239548*n^4 +803564*n^3 -1283816*n^2
           +963472*n -266160) *a(n-2)
          -2*(2*n-5)*(10323*n^4 -62876*n^3 +136848*n^2
           -125584*n +40329) *a(n-3)
          +2*(2*n-7)*(n-2)*(1147*n^3 -4055*n^2 +4742*n
           -1762) *a(n-4)) / (5*(n-1)*n*
          (1147*n^3 -7496*n^2 +16293*n -11706)))
        end:
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, s_] := b[n, s] = If[n == 0, 1, If[nJean-François Alcover, Feb 09 2015, after A238342 *)

Formula

Recurrence: see Maple program.
a(n) ~ c*r^n/sqrt(Pi*n), where r = 3.408698199842151... is the root of the equation 4 - 32*r - 8*r^2 + 5*r^3 = 0 and c = 0.479880052557486135... is the root of the equation 1 + 384*c^2 - 2368*c^4 + 2960*c^6 = 0. - Vaclav Kotesovec, Nov 27 2013