A333044 Exponential self-convolution of A232690.
1, 2, 6, 26, 146, 1014, 8374, 80282, 875874, 10719734, 145422182, 2166117018, 35143677106, 616926078326, 11650276119702, 235510563023642, 5074238094097538, 116081921186069622, 2810093148179120710, 71767508789469271322, 1928439105298059705042
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + 146*x^4/4! + 1014*x^5/5! + ...
Crossrefs
Cf. A232690.
Programs
-
Mathematica
CoefficientList[Simplify[Assuming[Element[x, Reals], Series[LambertW[-1, (4*x - 3)*E^(-3)]/(4*x - 3), {x, 0, 20}]]], x] * Range[0, 20]!
-
PARI
{a(n)=my(A = 1+2*x); for(i=1, n, A = exp(2/sqrt(A)*intformal(A^(3/2) + x*O(x^n)))); n!*polcoeff(A, n)} for(n=0, 20, print1(a(n), ", "))
Comments