cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A333044 Exponential self-convolution of A232690.

Original entry on oeis.org

1, 2, 6, 26, 146, 1014, 8374, 80282, 875874, 10719734, 145422182, 2166117018, 35143677106, 616926078326, 11650276119702, 235510563023642, 5074238094097538, 116081921186069622, 2810093148179120710, 71767508789469271322, 1928439105298059705042
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 06 2020

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + 146*x^4/4! + 1014*x^5/5! + ...
		

Crossrefs

Cf. A232690.

Programs

  • Mathematica
    CoefficientList[Simplify[Assuming[Element[x, Reals], Series[LambertW[-1, (4*x - 3)*E^(-3)]/(4*x - 3), {x, 0, 20}]]], x] * Range[0, 20]!
  • PARI
    {a(n)=my(A = 1+2*x); for(i=1, n, A = exp(2/sqrt(A)*intformal(A^(3/2) + x*O(x^n)))); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f. satisfies: A(x) = exp(2/sqrt(A(x)) * Integral A(x)^(3/2) dx).
E.g.f. LambertW(-1, (4*x-3)*exp(-3))/(4*x-3).
a(n) = Sum_{k=0..n} binomial(n,k) * A232690(k) * A232690(n-k).

A232687 G.f. A(x) satisfies: the sum of the coefficients of x^k, k=0..n, in A(x)^n equals Sum_{k=0..n} C(n,k)^3 = A000172(n) (Franel numbers), for n>=0.

Original entry on oeis.org

1, 1, 3, 7, 20, 66, 244, 980, 4182, 18674, 86353, 410541, 1996214, 9888844, 49760925, 253767097, 1309154825, 6822023553, 35865392690, 190038440422, 1014015337209, 5444707218851, 29401289997403, 159584901816255, 870267544114291, 4766246752344215, 26206635040151511
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2013

Keywords

Comments

Compare to: Sum_{k=0..n} [x^k] 1/(1-x)^n = Sum_{k=0..n} C(n,k)^2 = (2*n)!/n!^2.
a(n+1)/a(n) tends to 6.0295... - Vaclav Kotesovec, Jan 22 2014

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 20*x^4 + 66*x^5 + 244*x^6 + 980*x^7 +...
ILLUSTRATION OF INITIAL TERMS.
If we form an array of coefficients of x^k in A(x)^n, n>=0, like so:
A^0: [1],0,  0,   0,    0,    0,     0,      0,      0, ...;
A^1: [1, 1], 3,   7,   20,   66,   244,    980,   4182, ...;
A^2: [1, 2,  7], 20,   63,  214,   789,   3124,  13112, ...;
A^3: [1, 3, 12,  40], 138,  492,  1848,   7326,  30531, ...;
A^4: [1, 4, 18,  68,  255], 960,  3716,  14920,  62295, ...;
A^5: [1, 5, 25, 105,  425, 1691], 6785,  27805, 117165, ...;
A^6: [1, 6, 33, 152,  660, 2772, 11560], 48588, 207774, ...;
A^7: [1, 7, 42, 210,  973, 4305, 18676,  80746],351792, ...;
A^8: [1, 8, 52, 280, 1378, 6408, 28916, 128808, 573311], ...; ...
then the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals Sum_{k=0..n} C(n,k)^3 = A000172(n):
A000172(0) = 1 = 1;
A000172(1) = 1 + 1 = 2;
A000172(2) = 1 + 2 +  7 = 10;
A000172(3) = 1 + 3 + 12 +  40 = 56;
A000172(4) = 1 + 4 + 18 +  68 + 255 = 346;
A000172(5) = 1 + 5 + 25 + 105 + 425 + 1691 = 2252;
A000172(6) = 1 + 6 + 33 + 152 + 660 + 2772 + 11560 = 15184; ...
		

Crossrefs

Programs

  • Mathematica
    Franel[n_] := Sum[Binomial[n, k]^3, {k, 0, n}];
    a[0] = 1; a[n_] := Module[{B, G}, B = Sum[Franel[k]*x^k, {k, 0, n+1}] + x^3*O[x]^n; G = 1+x*O[x]^n; For[i=1, i <= n, i++, G = 1+Integrate[(B-1)* (G/x)-B*G^2, x]]; SeriesCoefficient[x/InverseSeries[x*G, x], {x, 0, n}]];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jan 15 2018, translated from 2nd PARI program *)
  • PARI
    /* By Definition (slow): */
    {Franel(n)=sum(k=0,n,binomial(n,k)^3)}
    {a(n)=if(n==0, 1, (Franel(n) - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j)^n + x*O(x^k), k)))/n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Faster, using series reversion: */
    {Franel(n)=sum(k=0,n,binomial(n,k)^3)}
    {a(n)=local(B=sum(k=0, n+1, Franel(k)*x^k)+x^3*O(x^n), G=1+x*O(x^n));
    for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); polcoeff(x/serreverse(x*G), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

Given g.f. A(x), Sum_{k=0..n} [x^k] A(x)^n = Sum_{k=0..n} C(n,k)^3 = A000172(n).
Given g.f. A(x), let G(x) = A(x*G(x)) then (G(x) + x*G'(x)) / (G(x) - x*G(x)^2) = Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-2*x)^(3*n+1) = Sum_{n>=0} A000172(n)*x^n.

A232692 E.g.f. satisfies: A(x) = exp( 1/A(x)^3 * Integral A(x)^8 dx ).

Original entry on oeis.org

1, 1, 3, 24, 213, 3096, 46071, 967608, 20251809, 555747048, 15004870731, 508165972056, 16810393586733, 677183788645704, 26523956467895103, 1238567261126084856, 56056407696184372281, 2976966230117448265128, 152872356339113679491859, 9098430770913969095416728
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2013

Keywords

Comments

Compare e.g.f. to: B(x) = exp( 1/B(x)^3 * Integral B(x)^3 dx ) where B(y) = Bessel polynomial y_n(-3) (cf. A065923).
Note that G(x) = exp(1/G(x)^3 * Integral G(x)^7 dx) has negative coefficients.
CONJECTURE:
Given G(x,n,k) = G such that G = exp( 1/G^n * Integral G^k dx ) then G(x,n,k) consists solely of positive coefficients when k >= A047399(n) where A047399 lists numbers that are congruent to {0,3,6} mod 8.

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 24*x^3/3! + 213*x^4/4! + 3096*x^5/5! +...
Related expansions:
log(A(x)) = x + 2*x^2/2! + 17*x^3/3! + 120*x^4/4! + 1905*x^5/5! + 23640*x^6/6! +...
Integral A(x)^8 dx = x + 8*x^2/2! + 80*x^3/3! + 1032*x^4/4! + 16320*x^5/5! +...
1/A(x)^3 = 1 - 3*x + 3*x^2/2! - 24*x^3/3! + 117*x^4/4! - 2088*x^5/5! +...
		

Crossrefs

Programs

  • Maple
    seq(n! * coeff(series((3*LambertW(-1, (25*x-8)/3*exp(-8/3))/(25*x-8))^(1/5), x, n+1), x, n), n=0..20) # Vaclav Kotesovec, Jan 05 2014
  • Mathematica
    m = 20; A[] = 1; Do[A[x] = Exp[1/A[x]^3 Integrate[A[x]^8 + O[x]^m, x]] + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] Range[0, m-1]! (* Jean-François Alcover, Nov 03 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(1/A^3*intformal(A^8+x*O(x^n))));n!*polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f.: (3*LambertW(-1, (25*x-8)/3*exp(-8/3))/(25*x-8))^(1/5). - Vaclav Kotesovec, Jan 05 2014

A232691 E.g.f. satisfies: A(x) = exp( 1/A(x)^2 * Integral A(x)^6 dx ).

Original entry on oeis.org

1, 1, 3, 19, 161, 1857, 25843, 433891, 8378913, 185022049, 4565674115, 125075024211, 3755498096257, 122872235056993, 4345683577199283, 165338206044981091, 6730088764152273857, 291935651271257092161, 13440846879808207921027, 654704450541594973156627
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2013

Keywords

Comments

Note that G(x) = exp(1/G(x)^2 * Integral G(x)^5 dx) has negative coefficients.
Compare e.g.f. to: B(x) = exp( 1/B(x)^2 * Integral B(x)^2 dx ) where B(y) = Bessel polynomial y_n(-2) (cf. A002119).

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 161*x^4/4! + 1857*x^5/5! +...
Related expansions:
log(A(x)) = x + 2*x^2/2! + 12*x^3/3! + 88*x^4/4! + 976*x^5/5! + 12576*x^6/6! +...
Integral A(x)^6 dx = x + 6*x^2/2! + 48*x^3/3! + 504*x^4/4! + 6576*x^5/5! +...
1/A(x)^2 = 1 - 2*x - 8*x^3/3! - 16*x^4/4! - 384*x^5/5! - 2624*x^6/6! -...
		

Crossrefs

Programs

  • Maple
    seq(n! * coeff(series((LambertW(-1, (8*x-3)*exp(-3))/(8*x-3))^(1/4), x, n+1), x, n), n=0..20) # Vaclav Kotesovec, Jan 05 2014
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(1/A^2*intformal(A^6+x*O(x^n))));n!*polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f.: (LambertW(-1, (8*x-3)*exp(-3))/(8*x-3))^(1/4). - Vaclav Kotesovec, Jan 05 2014
Showing 1-4 of 4 results.