A232700 Number of labeled connected point-determining bipartite graphs on n vertices.
1, 1, 0, 12, 60, 1320, 26880, 898800, 40446000, 2568736800, 225962684640, 27627178692960, 4686229692144000, 1104514965434200320, 361988888631722352000, 165271302775469812521600, 105278651889065640047462400, 93750696652129931568573619200
Offset: 1
Keywords
Examples
Consider n = 4. There are 12 connected point-determining bipartite graphs on 4 vertices: the graph *--*--*--*, with 12 possible labelings. - _Justin M. Troyka_, Nov 27 2013
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100 (terms 1..20 from Justin M. Troyka)
- Ira Gessel and Ji Li, Enumeration of point-determining graphs, arXiv:0705.0042 [math.CO], 2007-2009.
- Andy Hardt, Pete McNeely, Tung Phan, and Justin M. Troyka, Combinatorial species and graph enumeration, arXiv:1312.0542 [math.CO], 2013.
Crossrefs
Cf. A088974 (unlabeled connected point-determining bipartite graphs).
Programs
-
Mathematica
terms = 18; G[x_] = Sqrt[Sum[((1 + x)^2^k*Log[1 + x]^k)/k!, {k, 0, terms+1}]] + O[x]^(terms+1); A[x_] = x + Log[1 + (G[x] - x - 1)/(1 + x)]; (CoefficientList[A[x], x]*Range[0, terms]!) // Rest (* Jean-François Alcover, Sep 13 2018, after Andrew Howroyd *)
-
PARI
seq(n)={my(A=log(1+x+O(x*x^n))); my(p=sqrt(sum(k=0, n, exp(2^k*A)*A^k/k!))); Vec(serlaplace(x + log(1+(p-x-1)/(1+x))))} \\ Andrew Howroyd, Sep 09 2018
Formula
E.g.f.: x + log(1 + (G(x)-x-1)/(1+x)) where G(x) is the e.g.f. of A232699. - Andrew Howroyd, Sep 09 2018
Comments