cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A232354 Numbers k that divide sigma(k^2) where sigma is the sum of divisors function (A000203).

Original entry on oeis.org

1, 39, 793, 2379, 7137, 13167, 76921, 78507, 230763, 238887, 549549, 692289, 863577, 1491633, 1672209, 2076867, 4317885, 7615179, 8329831, 10441431, 23402223, 24989493, 37776123, 53306253, 53695813, 55871145, 74968479, 83766969, 133854435, 144688401, 161087439, 189437391
Offset: 1

Views

Author

Alex Ratushnyak, Nov 22 2013

Keywords

Comments

Squarefree terms are: 1, 39, 793, 2379, 76921, 230763, 8329831, 24989493, 53695813, 161087439, ... Quotients are: 1, 61, 873, 3783, 11737, 26543, 85563, 141911, 370773, 417263, 1155561, ... - Michel Marcus, Nov 23 2013
Many terms are also in sequence A069520, cf. A232067 for the intersection of these two sequences. - M. F. Hasler, Nov 24 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Divisible[DivisorSigma[1, #^2], #] &] (* Alonso del Arte, Dec 06 2013 *)
  • PARI
    isok(n) = (sigma(n^2) % n) == 0; \\ Michel Marcus, Nov 23 2013

Formula

A065764(a(n)) mod a(n) = 0.
Showing 1-1 of 1 results.