cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A069520 Numbers k such that (1/k) * Sum_{d|k} d*sigma(d) is an integer.

Original entry on oeis.org

1, 39, 793, 1638, 2379, 2394, 7137, 8190, 11970, 14274, 18135, 19530, 30927, 31122, 35685, 36270, 50700, 61854, 71370, 76921, 81900, 92781, 99918, 119700, 154635, 155610, 185562, 195300, 230763, 253890, 269500, 299754, 304038, 309270
Offset: 1

Views

Author

Benoit Cloitre, Apr 16 2002

Keywords

Comments

Sequence A232354 starts in a very similar way, and the two sequences have a common subsequence A232067 = (1, 39, 793, 2379, 7137, 76921, 230763, ...), but neither is a subsequence of the other. - M. F. Hasler, Nov 24 2013

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, # * DivisorSigma[1, #] &]; Select[Range[300000], Divisible[s[#], #] &] (* Amiram Eldar, May 14 2022 *)
  • PARI
    is_A069520(n)=!(sumdiv(n,d,d*sigma(d))%n) \\ - M. F. Hasler, Nov 24 2013

A232067 Numbers k such that sigma(k^2) and Sum_{d|k} d*sigma(d) are both multiples of k.

Original entry on oeis.org

1, 39, 793, 2379, 7137, 76921, 230763, 692289, 2076867, 8329831, 24989493, 53695813, 74968479, 161087439, 224905437, 243762649, 324863409, 375870691, 483262317, 731287947, 1127612073, 1449786951, 2094136707, 2193863841, 2631094837, 3382836219, 3606816823
Offset: 1

Views

Author

M. F. Hasler, Nov 24 2013

Keywords

Comments

Intersection of A069520 and A232354.
Can these numbers be characterized as the terms of A232354 which do not have a factor in {11, 1093, ...}? Is this A090814, or (a subsequence of) A126197?

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Mod[DivisorSigma[1, n^2], n] == 0 && Mod[DivisorSum[n, #*DivisorSigma[1, #] &], n] == 0; Select[Range[100000], fQ] (* T. D. Noe, Nov 25 2013 *)

A247222 Numbers n such that n = gcd(n^2, sigma(n^2)).

Original entry on oeis.org

1, 39, 793, 7137, 76921, 863577, 2076867, 4317885, 8329831, 23402223, 53695813, 55871145, 224905437, 243762649, 1449786951, 2631094837, 2781581517, 3606816823, 6105766123, 6605555983, 6838433189, 8771312043, 13907907585, 35225161895, 42580779709, 56541691089
Offset: 1

Views

Author

Michel Marcus, Nov 26 2014

Keywords

Comments

Previous name was: Numbers n such that numerator(sigma(n^2)/n^2)*denominator(sigma(n^2)/n^2) = sigma(n^2).
That is, numbers n, such that A249670(n^2) = A000203(n^2).
Appears to be a subsequence of A232354.

Examples

			sigma(39^2)/39^2 = 61/39 = 2379 = sigma(39^2), so 39 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], GCD[#^2, DivisorSigma[1, #^2]] == # &] (* Giovanni Resta, Jun 10 2016 *)
  • PARI
    isok(n) = {ab = sigma(n^2)/n^2; numerator(ab)*denominator(ab) == sigma(n^2);}
    
  • PARI
    {isa(n) = if( n<1, 0, n == gcd(n^2, sigma(n^2)))}; /* Michael Somos, Nov 26 2014 */

Extensions

New name after Michael Somos by Michel Marcus, Nov 27 2014
a(13)-a(14) from Michel Marcus, Nov 27 2014
a(15)-a(26) from Giovanni Resta, Jun 10 2016
Showing 1-3 of 3 results.