cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A232354 Numbers k that divide sigma(k^2) where sigma is the sum of divisors function (A000203).

Original entry on oeis.org

1, 39, 793, 2379, 7137, 13167, 76921, 78507, 230763, 238887, 549549, 692289, 863577, 1491633, 1672209, 2076867, 4317885, 7615179, 8329831, 10441431, 23402223, 24989493, 37776123, 53306253, 53695813, 55871145, 74968479, 83766969, 133854435, 144688401, 161087439, 189437391
Offset: 1

Views

Author

Alex Ratushnyak, Nov 22 2013

Keywords

Comments

Squarefree terms are: 1, 39, 793, 2379, 76921, 230763, 8329831, 24989493, 53695813, 161087439, ... Quotients are: 1, 61, 873, 3783, 11737, 26543, 85563, 141911, 370773, 417263, 1155561, ... - Michel Marcus, Nov 23 2013
Many terms are also in sequence A069520, cf. A232067 for the intersection of these two sequences. - M. F. Hasler, Nov 24 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Divisible[DivisorSigma[1, #^2], #] &] (* Alonso del Arte, Dec 06 2013 *)
  • PARI
    isok(n) = (sigma(n^2) % n) == 0; \\ Michel Marcus, Nov 23 2013

Formula

A065764(a(n)) mod a(n) = 0.

A232067 Numbers k such that sigma(k^2) and Sum_{d|k} d*sigma(d) are both multiples of k.

Original entry on oeis.org

1, 39, 793, 2379, 7137, 76921, 230763, 692289, 2076867, 8329831, 24989493, 53695813, 74968479, 161087439, 224905437, 243762649, 324863409, 375870691, 483262317, 731287947, 1127612073, 1449786951, 2094136707, 2193863841, 2631094837, 3382836219, 3606816823
Offset: 1

Views

Author

M. F. Hasler, Nov 24 2013

Keywords

Comments

Intersection of A069520 and A232354.
Can these numbers be characterized as the terms of A232354 which do not have a factor in {11, 1093, ...}? Is this A090814, or (a subsequence of) A126197?

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Mod[DivisorSigma[1, n^2], n] == 0 && Mod[DivisorSum[n, #*DivisorSigma[1, #] &], n] == 0; Select[Range[100000], fQ] (* T. D. Noe, Nov 25 2013 *)
Showing 1-2 of 2 results.