cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A232354 Numbers k that divide sigma(k^2) where sigma is the sum of divisors function (A000203).

Original entry on oeis.org

1, 39, 793, 2379, 7137, 13167, 76921, 78507, 230763, 238887, 549549, 692289, 863577, 1491633, 1672209, 2076867, 4317885, 7615179, 8329831, 10441431, 23402223, 24989493, 37776123, 53306253, 53695813, 55871145, 74968479, 83766969, 133854435, 144688401, 161087439, 189437391
Offset: 1

Views

Author

Alex Ratushnyak, Nov 22 2013

Keywords

Comments

Squarefree terms are: 1, 39, 793, 2379, 76921, 230763, 8329831, 24989493, 53695813, 161087439, ... Quotients are: 1, 61, 873, 3783, 11737, 26543, 85563, 141911, 370773, 417263, 1155561, ... - Michel Marcus, Nov 23 2013
Many terms are also in sequence A069520, cf. A232067 for the intersection of these two sequences. - M. F. Hasler, Nov 24 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Divisible[DivisorSigma[1, #^2], #] &] (* Alonso del Arte, Dec 06 2013 *)
  • PARI
    isok(n) = (sigma(n^2) % n) == 0; \\ Michel Marcus, Nov 23 2013

Formula

A065764(a(n)) mod a(n) = 0.

A069520 Numbers k such that (1/k) * Sum_{d|k} d*sigma(d) is an integer.

Original entry on oeis.org

1, 39, 793, 1638, 2379, 2394, 7137, 8190, 11970, 14274, 18135, 19530, 30927, 31122, 35685, 36270, 50700, 61854, 71370, 76921, 81900, 92781, 99918, 119700, 154635, 155610, 185562, 195300, 230763, 253890, 269500, 299754, 304038, 309270
Offset: 1

Views

Author

Benoit Cloitre, Apr 16 2002

Keywords

Comments

Sequence A232354 starts in a very similar way, and the two sequences have a common subsequence A232067 = (1, 39, 793, 2379, 7137, 76921, 230763, ...), but neither is a subsequence of the other. - M. F. Hasler, Nov 24 2013

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, # * DivisorSigma[1, #] &]; Select[Range[300000], Divisible[s[#], #] &] (* Amiram Eldar, May 14 2022 *)
  • PARI
    is_A069520(n)=!(sumdiv(n,d,d*sigma(d))%n) \\ - M. F. Hasler, Nov 24 2013
Showing 1-2 of 2 results.