cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232709 Nonnegative integers such that the sum of digits mod 10 equals the product of digits mod 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 48, 84, 109, 123, 132, 137, 145, 154, 159, 173, 178, 187, 190, 195, 208, 213, 228, 231, 233, 235, 237, 239, 248, 253, 268, 273, 280, 282, 284, 286, 288, 293, 307, 312, 317, 321, 323, 325, 327, 329, 332, 337, 347, 352, 357, 367, 370, 371, 372, 373, 374, 375, 376, 377
Offset: 1

Views

Author

Jon Perry, Nov 28 2013

Keywords

Examples

			293 is in the sequence because 2+9+3 = 14 == 4 mod 10 and 2*9*3 = 54 == 4 mod 10.
		

Crossrefs

Cf. A034710.

Programs

  • JavaScript
    for (i=0;i<1000;i++) {
    s=i.toString().split("");
    sl=s.length;
    c=0;d=1;
    for (j=0;j
    				
  • Mathematica
    Select[Range[0,400],Mod[Total[IntegerDigits[#]],10]==Mod[Times@@ IntegerDigits[ #],10]&] (* Harvey P. Dale, Oct 15 2021 *)
  • PARI
    is(n) = my(d=digits(n));vecsum(d)%10==vecprod(d)%10 \\ David A. Corneth, Oct 15 2021
    
  • Python
    from math import prod
    def ok(n): d = list(map(int, str(n))); return sum(d)%10 == prod(d)%10
    print([k for k in range(378) if ok(k)]) # Michael S. Branicky, Oct 15 2021

Extensions

Offset changed from 0 to 1 by N. J. A. Sloane, Oct 15 2021