A232709 Nonnegative integers such that the sum of digits mod 10 equals the product of digits mod 10.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 48, 84, 109, 123, 132, 137, 145, 154, 159, 173, 178, 187, 190, 195, 208, 213, 228, 231, 233, 235, 237, 239, 248, 253, 268, 273, 280, 282, 284, 286, 288, 293, 307, 312, 317, 321, 323, 325, 327, 329, 332, 337, 347, 352, 357, 367, 370, 371, 372, 373, 374, 375, 376, 377
Offset: 1
Examples
293 is in the sequence because 2+9+3 = 14 == 4 mod 10 and 2*9*3 = 54 == 4 mod 10.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A034710.
Programs
-
JavaScript
for (i=0;i<1000;i++) { s=i.toString().split(""); sl=s.length; c=0;d=1; for (j=0;j
-
Mathematica
Select[Range[0,400],Mod[Total[IntegerDigits[#]],10]==Mod[Times@@ IntegerDigits[ #],10]&] (* Harvey P. Dale, Oct 15 2021 *)
-
PARI
is(n) = my(d=digits(n));vecsum(d)%10==vecprod(d)%10 \\ David A. Corneth, Oct 15 2021
-
Python
from math import prod def ok(n): d = list(map(int, str(n))); return sum(d)%10 == prod(d)%10 print([k for k in range(378) if ok(k)]) # Michael S. Branicky, Oct 15 2021
Extensions
Offset changed from 0 to 1 by N. J. A. Sloane, Oct 15 2021