cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232713 Doubly pentagonal numbers: a(n) = n*(3*n-2)*(3*n-1)*(3*n+1)/8.

Original entry on oeis.org

0, 1, 35, 210, 715, 1820, 3876, 7315, 12650, 20475, 31465, 46376, 66045, 91390, 123410, 163185, 211876, 270725, 341055, 424270, 521855, 635376, 766480, 916895, 1088430, 1282975, 1502501, 1749060, 2024785, 2331890, 2672670, 3049501, 3464840, 3921225, 4421275
Offset: 0

Views

Author

Bruno Berselli, Nov 28 2013

Keywords

Crossrefs

Cf. similar sequences: A000583 for A000290(A000290(n)); A002817 for A000217(A000217(n)); A063249 for A000384(A000384(n)).

Programs

  • Magma
    [n*(3*n-2)*(3*n-1)*(3*n+1)/8: n in [0..40]];
    
  • Mathematica
    Table[n (3 n - 2) (3 n - 1) (3 n + 1)/8, {n, 0, 40}]
  • PARI
    a(n)=n*(3*n-2)*(3*n-1)*(3*n+1)/8 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: x*(1 + 30*x + 45*x^2 + 5*x^3) / (1 - x)^5.
a(n) = A000326(A000326(n)) = A000332(3n+1).
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 4 + 2*Pi/sqrt(3) - 6*log(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 32*log(2)/3 - 4*Pi/(3*sqrt(3)) - 4. (End)