cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A236770 a(n) = n*(n + 1)*(3*n^2 + 3*n - 2)/8.

Original entry on oeis.org

0, 1, 12, 51, 145, 330, 651, 1162, 1926, 3015, 4510, 6501, 9087, 12376, 16485, 21540, 27676, 35037, 43776, 54055, 66045, 79926, 95887, 114126, 134850, 158275, 184626, 214137, 247051, 283620, 324105, 368776, 417912, 471801, 530740, 595035, 665001, 740962
Offset: 0

Views

Author

Bruno Berselli, Jan 31 2014

Keywords

Comments

After 0, first trisection of A011779 and right border of A177708.

Crossrefs

Partial sums of A004188.
Cf. similar sequences on the polygonal numbers: A002817(n) = A000217(A000217(n)); A000537(n) = A000290(A000217(n)); A037270(n) = A000217(A000290(n)); A062392(n) = A000384(A000217(n)).
Cf. sequences of the form A000217(m)+k*A000332(m+2): A062392 (k=12); A264854 (k=11); A264853 (k=10); this sequence (k=9); A006324 (k=8); A006323 (k=7); A000537 (k=6); A006322 (k=5); A006325 (k=4), A002817 (k=3), A006007 (k=2), A006522 (k=1).

Programs

  • Magma
    [n*(n+1)*(3*n^2+3*n-2)/8: n in [0..40]];
  • Mathematica
    Table[n (n + 1) (3 n^2 + 3 n - 2)/8, {n, 0, 40}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,12,51,145},40] (* Harvey P. Dale, Aug 22 2016 *)
  • PARI
    for(n=0, 40, print1(n*(n+1)*(3*n^2+3*n-2)/8", "));
    

Formula

G.f.: x*(1 + 7*x + x^2)/(1 - x)^5.
a(n) = a(-n-1) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A000326(A000217(n)).
a(n) = A000217(n) + 9*A000332(n+2).
Sum_{n>=1} 1/a(n) = 2 + 4*sqrt(3/11)*Pi*tan(sqrt(11/3)*Pi/2) = 1.11700627139319... . - Vaclav Kotesovec, Apr 27 2016

A063249 Doubly hexagonal numbers.

Original entry on oeis.org

0, 1, 66, 435, 1540, 4005, 8646, 16471, 28680, 46665, 72010, 106491, 152076, 210925, 285390, 378015, 491536, 628881, 793170, 987715, 1216020, 1481781, 1788886, 2141415, 2543640, 3000025, 3515226, 4094091, 4741660, 5463165
Offset: 0

Views

Author

Henry Bottomley, Jul 11 2001

Keywords

Examples

			a(2)=66 since 6 is the 2nd hexagonal number and 66 is the 6th hexagonal number.
		

Crossrefs

Cf. A002817 for doubly triangular numbers, A000583 for doubly square numbers and A232713 for doubly pentagonal numbers.

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,1,66,435,1540},30] (* Harvey P. Dale, Dec 02 2016 *)
  • PARI
    concat(0, Vec(-x*(15*x^3+115*x^2+61*x+1)/(x-1)^5 + O(x^100))) \\ Colin Barker, Sep 14 2014

Formula

a(n) = n*(2*n-1)(4*n^2-2*n-1) = A000384(A000384(n)).
G.f.: -x*(15*x^3+115*x^2+61*x+1) / (x-1)^5. - Colin Barker, Sep 14 2014

A260810 a(n) = n^2*(3*n^2 - 1)/2.

Original entry on oeis.org

0, 1, 22, 117, 376, 925, 1926, 3577, 6112, 9801, 14950, 21901, 31032, 42757, 57526, 75825, 98176, 125137, 157302, 195301, 239800, 291501, 351142, 419497, 497376, 585625, 685126, 796797, 921592, 1060501, 1214550, 1384801, 1572352, 1778337, 2003926, 2250325, 2518776
Offset: 0

Views

Author

Bruno Berselli, Jul 31 2015

Keywords

Comments

Pentagonal numbers with square indices.
After 0, a(k) is a square if k is in A072256.

Crossrefs

Subsequence of A001318 and A245288 (see Formula field).
Cf. A000326, A193218 (first differences).
Cf. A000583 (squares with square indices), A002593 (hexagonal numbers with square indices).
Cf. A232713 (pentagonal numbers with pentagonal indices), A236770 (pentagonal numbers with triangular indices).

Programs

  • Magma
    [n^2*(3*n^2-1)/2: n in [0..40]];
    
  • Magma
    I:=[0,1,22,117,376]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Aug 23 2015
  • Maple
    A260810:=n->n^2*(3*n^2 - 1)/2: seq(A260810(n), n=0..50); # Wesley Ivan Hurt, Apr 25 2017
  • Mathematica
    Table[n^2 (3 n^2 - 1)/2, {n, 0, 40}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 22, 117, 376}, 40] (* Vincenzo Librandi, Aug 23 2015 *)
  • PARI
    vector(40, n, n--; n^2*(3*n^2-1)/2)
    
  • Sage
    [n^2*(3*n^2-1)/2 for n in (0..40)]
    

Formula

G.f.: x*(1 + x)*(1 + 16*x + x^2)/(1 - x)^5.
a(n) = a(-n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A245288(2*n^2).
a(n) = A001318(2*n^2-1) with A001318(-1) = 0.
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 3 - Pi^2/3 - sqrt(3)*Pi*cot(Pi/sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi*cosec(Pi/sqrt(3)) - Pi^2/6 - 3. (End)

A329754 Doubly pentagonal pyramidal numbers.

Original entry on oeis.org

0, 1, 126, 3078, 32800, 213750, 1008126, 3783976, 11985408, 33297075, 83338750, 191592126, 410450976, 828497488, 1589341950, 2917620000, 5154021376, 8801526501, 14585352318, 23529456550, 37052820000, 57089119626, 86233820926, 127923156648, 186649920000, 268221484375, 380065968126
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A002411[n_] := n^2 (n + 1)/2; a[n_] := A002411[A002411[n]]; Table[a[n], {n, 0, 26}]
    Table[Sum[k (3 k - 1)/2, {k, 0, n^2 (n + 1)/2}], {n, 0, 26}]
    nmax = 26; CoefficientList[Series[x (1 + 116 x + 1863 x^2 + 7570 x^3 + 9350 x^4 + 3474 x^5 + 304 x^6 + 2 x^7)/(1 - x)^10, {x, 0, nmax}], x]
    LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 126, 3078, 32800, 213750, 1008126, 3783976, 11985408, 33297075}, 27]

Formula

G.f.: x*(1 + 116*x + 1863*x^2 + 7570*x^3 + 9350*x^4 + 3474*x^5 + 304*x^6 + 2*x^7)/(1 - x)^10.
a(n) = A002411(A002411(n)).
a(n) = Sum_{k=0..A002411(n)} A000326(k).
a(n) = n^4 *(n^3+n^2+2) *(n+1)^2 /16. - R. J. Mathar, Nov 28 2019

A047584 Numbers that are congruent to {1, 3, 5, 6, 7} mod 8.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 27, 29, 30, 31, 33, 35, 37, 38, 39, 41, 43, 45, 46, 47, 49, 51, 53, 54, 55, 57, 59, 61, 62, 63, 65, 67, 69, 70, 71, 73, 75, 77, 78, 79, 81, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 99, 101, 102, 103, 105, 107
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that A232713(n) is divisible by n. [Bruno Berselli, Dec 11 2013]

Crossrefs

Cf. A232713.

Programs

  • Mathematica
    Select[Range@ 107, Or[OddQ@ Mod[#, 8], Mod[#, 8] == 6] &] (* Michael De Vlieger, Oct 23 2015 *)
    #+{1,3,5,6,7}&/@(8*Range[0,20])//Flatten (* Harvey P. Dale, May 13 2019 *)
  • PARI
    x='x+O('x^100); Vec((1+x)*(1+x+x^2+x^4)/((1-x)^2*(1+x+x^2+x^3+ x^4))) \\ Altug Alkan, Oct 22 2015

Formula

G.f.: (1 + x)*(1 + x + x^2 + x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)). [Bruno Berselli, Dec 11 2013]
From Wesley Ivan Hurt, Dec 30 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
a(n) = (40n - 10 + 3*(n mod 5) + 3*((n+1) mod 5) - 2*((n+2) mod 5) - 2*((n+3) mod 5) - 2*((n+4) mod 5))/25. (End)

A264891 a(n) = n*(5*n - 3)*(25*n^2 - 15*n - 6)/8.

Original entry on oeis.org

0, 1, 112, 783, 2839, 7480, 16281, 31192, 54538, 89019, 137710, 204061, 291897, 405418, 549199, 728190, 947716, 1213477, 1531548, 1908379, 2350795, 2865996, 3461557, 4145428, 4925934, 5811775, 6812026, 7936137, 9193933, 10595614, 12151755, 13873306
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Comments

Doubly heptagonal numbers.

Crossrefs

Programs

  • Magma
    [n*(5*n-3)*(25*n^2-15*n-6)/8: n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
  • Maple
    seq(n*(5*n - 3)*(25*n^2 - 15*n - 6)/8, n=0..100); # Robert Israel, Dec 02 2015
  • Mathematica
    Table[n (5 n - 3) (25 n^2 - 15 n - 6)/8, {n, 0, 35}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,112,783,2839},40] (* Harvey P. Dale, Nov 19 2019 *)
  • PARI
    vector(100, n, n--; n*(5*n-3)*(25*n^2-15*n-6)/8) \\ Altug Alkan, Nov 27 2015
    

Formula

G.f.: x*(1 + 107*x + 233*x^2 + 34*x^3)/(1 - x)^5.
a(n) = A000566(A000566(n)).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Nov 28 2015
Sum_{n>0} 1/a(n) = (4*(sqrt(33)*gamma + sqrt(33)*polygamma(0, 2/5) - 3*polygamma(0, (1/10)*(7 - sqrt(33))) + 3 polygamma(0, (1/10)* (7 + sqrt(33)))))/(9*sqrt(33)) = 1.0108420043...., where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.
E.g.f.: x*(8 + 440*x + 600*x^2 + 125*x^3)*exp(x)/8, - Robert Israel, Dec 02 2015

A264892 a(n) = n*(3*n - 2)*(9*n^2 - 6*n - 2).

Original entry on oeis.org

0, 1, 176, 1281, 4720, 12545, 27456, 52801, 92576, 151425, 234640, 348161, 498576, 693121, 939680, 1246785, 1623616, 2080001, 2626416, 3273985, 4034480, 4920321, 5944576, 7120961, 8463840, 9988225, 11709776, 13644801, 15810256, 18223745, 20903520
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Comments

Doubly octagonal numbers.

Crossrefs

Programs

  • Magma
    [n*(3*n-2)*(9*n^2-6*n-2): n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
  • Mathematica
    Table[n (3 n - 2) (9 n^2 - 6 n - 2), {n, 0, 30}]
  • PARI
    concat(0, Vec(x*(1+171*x+411*x^2+65*x^3)/(1-x)^5 + O(x^100))) \\ Altug Alkan, Nov 27 2015
    

Formula

G.f.: x*(1 + 171*x + 411*x^2 + 65*x^3)/(1 - x)^5.
a(n) = A000567(A000567(n)).
Sum_{n>0} 1/a(n) = (sqrt(3)*gamma + sqrt(3)*polygamma(0, 1/3) - polygamma(0, (1/3)*(2 - sqrt(3))) + polygamma(0, (1/3)*(2 + sqrt(3))))/(4*sqrt(3)) = 1.006842786293...,where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.

A264894 a(n) = n*(7*n - 5)*(49*n^2 - 35*n - 10)/8.

Original entry on oeis.org

0, 1, 261, 1956, 7291, 19500, 42846, 82621, 145146, 237771, 368875, 547866, 785181, 1092286, 1481676, 1966875, 2562436, 3283941, 4148001, 5172256, 6375375, 7777056, 9398026, 11260041, 13385886, 15799375, 18525351, 21589686, 25019281, 28842066, 33087000
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Comments

Doubly 9-gonal (or nonagonal) numbers.

Crossrefs

Programs

  • Magma
    [n*(7*n-5)*(49*n^2-35*n-10)/8: n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
  • Mathematica
    Table[n (7 n - 5) (49 n^2 - 35 n - 10)/8, {n, 0, 30}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,261,1956,7291},40] (* Harvey P. Dale, Apr 29 2017 *)
  • PARI
    vector(100, n, n--; n*(7*n-5)*(49*n^2-35*n-10)/8) \\ Altug Alkan, Nov 27 2015
    

Formula

G.f.: x*(1 + 256*x + 661*x^2 + 111*x^3)/(1 - x)^5.
a(n) = A001106(A001106(n)).
Sum_{n>0} 1/a(n) = (4*(sqrt(65)*gamma + sqrt(65)*polygamma(0, 2/7) - 5*polygamma(0, (1/14)*(9 - sqrt(65))) + 5*polygamma(0, (1/14)*(9 + sqrt(65)))))/(25*sqrt(65)) = 1.0045877861645573..., where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.

A264895 a(n) = n*(4*n - 3)*(16*n^2 - 12*n - 3).

Original entry on oeis.org

0, 1, 370, 2835, 10660, 28645, 63126, 121975, 214600, 351945, 546490, 812251, 1164780, 1621165, 2200030, 2921535, 3807376, 4880785, 6166530, 7690915, 9481780, 11568501, 13981990, 16754695, 19920600, 23515225, 27575626, 32140395, 37249660, 42945085, 49269870
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Comments

Doubly 10-gonal (or decagonal) numbers.

Crossrefs

Programs

  • Magma
    [n*(4*n - 3)*(16*n^2 - 12*n - 3): n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
  • Mathematica
    Table[n (4 n - 3) (16 n^2 - 12 n - 3), {n, 0, 30}]
    LinearRecurrence[{5,-10,10,-5,1}, {0, 1, 370, 2835, 10660}, 50] (* G. C. Greubel, Sep 07 2018 *)
  • PARI
    vector(100, n, n--; n*(4*n-3)*(16*n^2-12*n-3)) \\ Altug Alkan, Nov 27 2015
    

Formula

G.f.: x*(1 + 365*x + 995*x^2 + 175*x^3)/(1 - x)^5.
a(n) = A001107(A001107(n)).
Sum_{n>0} 1/a(n) = (sqrt(21)*gamma + sqrt(21)*polygamma(0, 1/4) - 3*polygamma(0, (1/8)*(5 - sqrt(21))) + 3*polygamma(0, (1/8)*(5 + sqrt(21))))/(9*sqrt(21))= 1.00322253307732984...., where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.
Showing 1-9 of 9 results.