cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A232713 Doubly pentagonal numbers: a(n) = n*(3*n-2)*(3*n-1)*(3*n+1)/8.

Original entry on oeis.org

0, 1, 35, 210, 715, 1820, 3876, 7315, 12650, 20475, 31465, 46376, 66045, 91390, 123410, 163185, 211876, 270725, 341055, 424270, 521855, 635376, 766480, 916895, 1088430, 1282975, 1502501, 1749060, 2024785, 2331890, 2672670, 3049501, 3464840, 3921225, 4421275
Offset: 0

Views

Author

Bruno Berselli, Nov 28 2013

Keywords

Crossrefs

Cf. similar sequences: A000583 for A000290(A000290(n)); A002817 for A000217(A000217(n)); A063249 for A000384(A000384(n)).

Programs

  • Magma
    [n*(3*n-2)*(3*n-1)*(3*n+1)/8: n in [0..40]];
    
  • Mathematica
    Table[n (3 n - 2) (3 n - 1) (3 n + 1)/8, {n, 0, 40}]
  • PARI
    a(n)=n*(3*n-2)*(3*n-1)*(3*n+1)/8 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: x*(1 + 30*x + 45*x^2 + 5*x^3) / (1 - x)^5.
a(n) = A000326(A000326(n)) = A000332(3n+1).
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 4 + 2*Pi/sqrt(3) - 6*log(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 32*log(2)/3 - 4*Pi/(3*sqrt(3)) - 4. (End)

A329755 Doubly hexagonal pyramidal numbers.

Original entry on oeis.org

0, 1, 252, 7337, 84575, 576080, 2795121, 10700382, 34388362, 96606475, 243939410, 564840991, 1217275137, 2469392562, 4757404575, 8765621740, 15534503236, 26603512517, 44196596312, 71459197125, 112756874195, 174046844356, 263335062397, 391232840362, 571628456750, 822490729775
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A002412[n_] := n (n + 1) (4 n - 1)/6; a[n_] := A002412[A002412[n]]; Table[a[n], {n, 0, 25}]
    Table[Sum[k (2 k - 1), {k, 0, n (n + 1) (4 n - 1)/6}], {n, 0, 25}]
    nmax = 25; CoefficientList[Series[x (1 + 242 x + 4862 x^2 + 22425 x^3 + 30465 x^4 + 12424 x^5 + 1248 x^6 + 13 x^7)/(1 - x)^10, {x, 0, nmax}], x]
    LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 252, 7337, 84575, 576080, 2795121, 10700382, 34388362, 96606475}, 26]

Formula

G.f.: x*(1 + 242*x + 4862*x^2 + 22425*x^3 + 30465*x^4 + 12424*x^5 + 1248*x^6 + 13*x^7)/(1 - x)^10.
a(n) = A002412(A002412(n)).
a(n) = Sum_{k=0..A002412(n)} A000384(k).
a(n) = n *(4*n-1) *(n+1) *(4*n^3+3*n^2-n+6) *(8*n^3+6*n^2-2*n-3) / 648 . - R. J. Mathar, Nov 28 2019

A264891 a(n) = n*(5*n - 3)*(25*n^2 - 15*n - 6)/8.

Original entry on oeis.org

0, 1, 112, 783, 2839, 7480, 16281, 31192, 54538, 89019, 137710, 204061, 291897, 405418, 549199, 728190, 947716, 1213477, 1531548, 1908379, 2350795, 2865996, 3461557, 4145428, 4925934, 5811775, 6812026, 7936137, 9193933, 10595614, 12151755, 13873306
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Comments

Doubly heptagonal numbers.

Crossrefs

Programs

  • Magma
    [n*(5*n-3)*(25*n^2-15*n-6)/8: n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
  • Maple
    seq(n*(5*n - 3)*(25*n^2 - 15*n - 6)/8, n=0..100); # Robert Israel, Dec 02 2015
  • Mathematica
    Table[n (5 n - 3) (25 n^2 - 15 n - 6)/8, {n, 0, 35}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,112,783,2839},40] (* Harvey P. Dale, Nov 19 2019 *)
  • PARI
    vector(100, n, n--; n*(5*n-3)*(25*n^2-15*n-6)/8) \\ Altug Alkan, Nov 27 2015
    

Formula

G.f.: x*(1 + 107*x + 233*x^2 + 34*x^3)/(1 - x)^5.
a(n) = A000566(A000566(n)).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Nov 28 2015
Sum_{n>0} 1/a(n) = (4*(sqrt(33)*gamma + sqrt(33)*polygamma(0, 2/5) - 3*polygamma(0, (1/10)*(7 - sqrt(33))) + 3 polygamma(0, (1/10)* (7 + sqrt(33)))))/(9*sqrt(33)) = 1.0108420043...., where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.
E.g.f.: x*(8 + 440*x + 600*x^2 + 125*x^3)*exp(x)/8, - Robert Israel, Dec 02 2015

A264892 a(n) = n*(3*n - 2)*(9*n^2 - 6*n - 2).

Original entry on oeis.org

0, 1, 176, 1281, 4720, 12545, 27456, 52801, 92576, 151425, 234640, 348161, 498576, 693121, 939680, 1246785, 1623616, 2080001, 2626416, 3273985, 4034480, 4920321, 5944576, 7120961, 8463840, 9988225, 11709776, 13644801, 15810256, 18223745, 20903520
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Comments

Doubly octagonal numbers.

Crossrefs

Programs

  • Magma
    [n*(3*n-2)*(9*n^2-6*n-2): n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
  • Mathematica
    Table[n (3 n - 2) (9 n^2 - 6 n - 2), {n, 0, 30}]
  • PARI
    concat(0, Vec(x*(1+171*x+411*x^2+65*x^3)/(1-x)^5 + O(x^100))) \\ Altug Alkan, Nov 27 2015
    

Formula

G.f.: x*(1 + 171*x + 411*x^2 + 65*x^3)/(1 - x)^5.
a(n) = A000567(A000567(n)).
Sum_{n>0} 1/a(n) = (sqrt(3)*gamma + sqrt(3)*polygamma(0, 1/3) - polygamma(0, (1/3)*(2 - sqrt(3))) + polygamma(0, (1/3)*(2 + sqrt(3))))/(4*sqrt(3)) = 1.006842786293...,where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.

A264894 a(n) = n*(7*n - 5)*(49*n^2 - 35*n - 10)/8.

Original entry on oeis.org

0, 1, 261, 1956, 7291, 19500, 42846, 82621, 145146, 237771, 368875, 547866, 785181, 1092286, 1481676, 1966875, 2562436, 3283941, 4148001, 5172256, 6375375, 7777056, 9398026, 11260041, 13385886, 15799375, 18525351, 21589686, 25019281, 28842066, 33087000
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Comments

Doubly 9-gonal (or nonagonal) numbers.

Crossrefs

Programs

  • Magma
    [n*(7*n-5)*(49*n^2-35*n-10)/8: n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
  • Mathematica
    Table[n (7 n - 5) (49 n^2 - 35 n - 10)/8, {n, 0, 30}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,261,1956,7291},40] (* Harvey P. Dale, Apr 29 2017 *)
  • PARI
    vector(100, n, n--; n*(7*n-5)*(49*n^2-35*n-10)/8) \\ Altug Alkan, Nov 27 2015
    

Formula

G.f.: x*(1 + 256*x + 661*x^2 + 111*x^3)/(1 - x)^5.
a(n) = A001106(A001106(n)).
Sum_{n>0} 1/a(n) = (4*(sqrt(65)*gamma + sqrt(65)*polygamma(0, 2/7) - 5*polygamma(0, (1/14)*(9 - sqrt(65))) + 5*polygamma(0, (1/14)*(9 + sqrt(65)))))/(25*sqrt(65)) = 1.0045877861645573..., where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.

A264895 a(n) = n*(4*n - 3)*(16*n^2 - 12*n - 3).

Original entry on oeis.org

0, 1, 370, 2835, 10660, 28645, 63126, 121975, 214600, 351945, 546490, 812251, 1164780, 1621165, 2200030, 2921535, 3807376, 4880785, 6166530, 7690915, 9481780, 11568501, 13981990, 16754695, 19920600, 23515225, 27575626, 32140395, 37249660, 42945085, 49269870
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Comments

Doubly 10-gonal (or decagonal) numbers.

Crossrefs

Programs

  • Magma
    [n*(4*n - 3)*(16*n^2 - 12*n - 3): n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
  • Mathematica
    Table[n (4 n - 3) (16 n^2 - 12 n - 3), {n, 0, 30}]
    LinearRecurrence[{5,-10,10,-5,1}, {0, 1, 370, 2835, 10660}, 50] (* G. C. Greubel, Sep 07 2018 *)
  • PARI
    vector(100, n, n--; n*(4*n-3)*(16*n^2-12*n-3)) \\ Altug Alkan, Nov 27 2015
    

Formula

G.f.: x*(1 + 365*x + 995*x^2 + 175*x^3)/(1 - x)^5.
a(n) = A001107(A001107(n)).
Sum_{n>0} 1/a(n) = (sqrt(21)*gamma + sqrt(21)*polygamma(0, 1/4) - 3*polygamma(0, (1/8)*(5 - sqrt(21))) + 3*polygamma(0, (1/8)*(5 + sqrt(21))))/(9*sqrt(21))= 1.00322253307732984...., where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.
Showing 1-6 of 6 results.