A000537
Sum of first n cubes; or n-th triangular number squared.
Original entry on oeis.org
0, 1, 9, 36, 100, 225, 441, 784, 1296, 2025, 3025, 4356, 6084, 8281, 11025, 14400, 18496, 23409, 29241, 36100, 44100, 53361, 64009, 76176, 90000, 105625, 123201, 142884, 164836, 189225, 216225, 246016, 278784, 314721, 354025, 396900, 443556, 494209, 549081
Offset: 0
G.f. = x + 9*x^2 + 36*x^3 + 100*x^4 + 225*x^5 + 441*x^6 + ... - _Michael Somos_, Aug 29 2022
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 62, eq. (6.3) for k=3.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 110ff.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, pp. 36, 58.
- Clifford Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Oxford University Press, 2001, p. 325.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- H. K. Strick, Geschichten aus der Mathematik II, Spektrum Spezial 3/11, p. 13.
- D. Wells, You Are A Mathematician, "Counting rectangles in a rectangle", Problem 8H, pp. 240; 254, Penguin Books 1995.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Luciano Ancora, Sum of cubes of the first "n" natural numbers
- Luciano Ancora, The Square Pyramidal Number and other figurate numbers
- M. Azaola and F. Santos, The number of triangulations of the cyclic polytope C(n,n-4), Discrete Comput. Geom., 27 (2002), 29-48 (see Prop. 4.2(b)).
- Marcel Berger, Encounter with a Geometer, Part II, Notices of the American Mathematical Society, Vol. 47, No. 3, (March 2000), pp. 326-340. [About the work of Mikhael Gromov.]
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- blackpenredpen, Math for fun, how many rectangles?, Youtube video (2018).
- Bikash Chakraborty, Proof Without Words: Sums of Powers of Natural numbers, arXiv:2012.11539 [math.HO], 2020.
- Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
- Shel Kaphan, How to see that the difference between two successive squared triangular numbers is a cube
- Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
- Seon-Hong Kim and Kenneth B. Stolarsky, Translations and Extensions of the Nicomachean Identity, J. Int. Seq. (2024), Vol. 27, Issue 6, Art. No. 24.6.3. See p. 1.
- Wolfdieter Lang, Ibn al-Haytham's trick.
- S. Legendre, The Number of Crossings in a Regular Drawing of the Complete Bipartite Graph, JIS 12 (2009) 09.5.5.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Henri Picciotto, Sum of Cubes, Proof without words.
- C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review
- C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Chordless Cycle
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Faulhaber's Formula
- Wikipedia, Faulhaber's formula
- Wikipedia, Squared triangular number
- G. Xiao, Sigma Server, Operate on "n^3"
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf.
A000217,
A000292,
A000332,
A000566,
A035287,
A039623,
A053382,
A053383,
A059376,
A059827,
A059860,
A085582,
A127777,
A176271.
-
List([0..40],n->(n*(n+1)/2)^2); # Muniru A Asiru, Dec 05 2018
-
a000537 = a000290 . a000217 -- Reinhard Zumkeller, Mar 26 2015
-
[(n*(n+1)/2)^2: n in [0..50]]; // Wesley Ivan Hurt, Jun 06 2014
-
a:= n-> (n*(n+1)/2)^2:
seq(a(n), n=0..40);
-
Accumulate[Range[0, 50]^3] (* Harvey P. Dale, Mar 01 2011 *)
f[n_] := n^2 (n + 1)^2/4; Array[f, 39, 0] (* Robert G. Wilson v, Nov 16 2012 *)
Table[CycleIndex[{{1, 2, 3, 4}, {3, 2, 1, 4}, {1, 4, 3, 2}, {3, 4, 1, 2}}, s] /. Table[s[i] -> n, {i, 1, 2}], {n, 0, 30}] (* Geoffrey Critzer, Jun 18 2014 *)
Accumulate @ Range[0, 50]^2 (* Waldemar Puszkarz, Jan 24 2015 *)
Binomial[Range[20], 2]^2 (* Eric W. Weisstein, Jan 02 2018 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 9, 36, 100}, 20] (* Eric W. Weisstein, Jan 02 2018 *)
CoefficientList[Series[-((x (1 + 4 x + x^2))/(-1 + x)^5), {x, 0, 20}], x] (* Eric W. Weisstein, Jan 02 2018 *)
-
a(n)=(n*(n+1)/2)^2
-
def A000537(n): return (n*(n+1)>>1)**2 # Chai Wah Wu, Oct 20 2023
A002817
Doubly triangular numbers: a(n) = n*(n+1)*(n^2+n+2)/8.
Original entry on oeis.org
0, 1, 6, 21, 55, 120, 231, 406, 666, 1035, 1540, 2211, 3081, 4186, 5565, 7260, 9316, 11781, 14706, 18145, 22155, 26796, 32131, 38226, 45150, 52975, 61776, 71631, 82621, 94830, 108345, 123256, 139656, 157641, 177310, 198765, 222111, 247456, 274911, 304590
Offset: 0
G.f. = x + 6*x^2 + 21*x^3 + 55*x^4 + 120*x^5 + 231*x^6 + 406*x^7 + 666*x^8 + ...
- A. Björner, The homology and shellability of matroids and geometric lattices, in Matroid Applications (ed. N. White), Encyclopedia of Mathematics and Its Applications, 40, Cambridge Univ. Press 1992.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 124, #25, Q(3,r).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics I, p. 292.
- T. D. Noe and William A. Tedeschi, Table of n, a(n) for n = 0..10000 (first 1000 terms computed by T. D. Noe)
- G. E. Andrews, P. Paule, A. Riese and V. Strehl, MacMahon's partition analysis V. Bijections, recursions and magic squares, p. 37.
- Weymar Astaiza, Alexander J. Barrios, Henry Chimal-Dzul, Stephan Ramon Garcia, Jaaziel de la Luz, Victor H. Moll, Yunied Puig, and Diego Villamizar, Symmetric tensor powers of graphs, arXiv:2309.13741 [math.CO], 2023. See p. 12.
- Matthias Beck, The number of "magic" squares and hypercubes, arXiv:math/0201013 [math.CO], 2002-2005.
- A. G. Bell, Partitioning integers in n dimensions, The Computer Journal, 13 (1970), 278-283.
- Miklos Bona, A New Proof of the Formula for the Number of 3 X 3 Magic Squares, Mathematics Magazine, Vol. 70, No. 3 (Jun., 1997), pp. 201-203.
- L. Carlitz, Enumeration of symmetric arrays, Duke Math. J., Vol. 33(4) (1966), pp. 771-782.
- Brian Conrey and Alex Gamburd, Pseudomoments of the Riemann zeta-function and pseudomagic squares, Journal of Number Theory, Volume 117, Issue 2, April 2006, Pages 263-278. See H4 on p. 269.
- P. Diaconis and A. Gamburd, Random matrices, magic squares and matching polynomials, Volume 11, Issue 2 (2004-6) (The Stanley Festschrift volume), Research Paper #R2.
- Robert W. Donley, Partitions for semi-magic squares of size three, arXiv:1911.00977 [math.CO], 2019.
- I. J. Good, On the application of symmetric Dirichlet distributions and their mixtures to contingency tables, Ann. Statist. 4 (1976), no. 6, 1159-1189.
- I. J. Good, On the application of symmetric Dirichlet distributions and contingency tables, pp. 1178-1179. (Annotated scanned copy)
- Hansraj Gupta, Enumeration of symmetric matrices, Duke Math. J. 35 (3), 653-659, (September 1968).
- D. M. Jackson and G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4 (1975), 474-477.
- D. M. Jackson & G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4.4 (1975), 474-477. (Annotated scanned copy)
- Milan Janjic, Two Enumerative Functions
- Neven Juric, Illustration of the 55 3 X 3 matrices
- Michal Opler, Pavel Valtr, and Tung Anh Vu, On the Arrangement of Hyperplanes Determined by n Points, EuroCG (39th European Workshop on Computational Geometry, Barcelona, Spain 2023) Session 7B, Talk 1, Vol. 54, No. 6.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Henry Warburton, On Self-Repeating Series, Transactions of the Cambridge Philosophical Society, Vol. 9, 471-486, 1856.
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Path Complement Graph
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf.
A000292 (3-cycle count of \bar P_{n+4}),
A060446 (5-cycle count of \bar P_{n+3}),
A302695 (6-cycle count of \bar P_{n+5}).
-
A002817 := n->n*(n+1)*(n^2+n+2)/8;
-
a[ n_] := n (n + 1) (n^2 + n + 2) / 8; (* Michael Somos, Jul 24 2002 *)
LinearRecurrence[{5,-10,10,-5,1}, {0,1,6,21,55},40] (* Harvey P. Dale, Jul 18 2011 *)
nn=50;Join[{0},With[{c=(n(n+1))/2},Flatten[Table[Take[Accumulate[Range[ (nn(nn+1))/2]], {c,c}],{n,nn}]]]] (* Harvey P. Dale, Mar 19 2013 *)
-
{a(n) = n * (n+1) * (n^2 + n + 2) / 8}; /* Michael Somos, Jul 24 2002 */
-
concat(0, Vec(x*(1+x+x^2)/(1-x)^5 + O(x^50))) \\ Altug Alkan, Nov 15 2015
-
def A002817(n): return (m:=n*(n+1))*(m+2)>>3 # Chai Wah Wu, Aug 30 2024
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999
A037270
a(n) = n^2*(n^2 + 1)/2.
Original entry on oeis.org
0, 1, 10, 45, 136, 325, 666, 1225, 2080, 3321, 5050, 7381, 10440, 14365, 19306, 25425, 32896, 41905, 52650, 65341, 80200, 97461, 117370, 140185, 166176, 195625, 228826, 266085, 307720, 354061, 405450, 462241, 524800, 593505, 668746, 750925, 840456, 937765
Offset: 0
Aaron Gulliver (gulliver(AT)elec.canterbury.ac.nz)
- C. Alsina and R. B. Nelson, Charming Proofs: A Journey into Elegant Mathematics, MAA, 2010. See p. 5.
- C. Barrientos, Graceful labelings of cyclic snakes, Ars Combin., 60(2001), 85-96.
- Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 55.
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
- T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
- R. A. Wilson, Cosmic Trigger, epilogue of S.-P. Sirag.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. D. Bell, A translation of Leonhard Euler's "De Quadratis Magicis", E795, arXiv:math/0408230 [math.CO], 2004-2005.
- N. G de Bruijn, Some classes of integer-valued functions, Nederl. Akad. Wetensch. Proc, Ser. A, 58 (1955), 363-367. See page 363.
- Th. Gruner, A. Kerber, R. Laue, and M. Meringer, Mathematics for Combinatorial Chemistry, In: F. Keil, W. Mackens, H. Voß and J. Wether, Scientific Computing in Chemical Engineering II, Springer, 1999, 74-81.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Row 3 of
A327086 (achiral simplex edge colorings).
-
a:=List([0..30],n->n^2*(n^2+1)/2); # Muniru A Asiru, Mar 28 2018
-
[n^2*(n^2 + 1)/2: n in [0..30]] // Stefano Spezia, Jan 15 2019
-
seq(n^2*(n^2+1)/2,n=0..30); # Muniru A Asiru, Mar 28 2018
-
Table[ n^2*((n^2 + 1)/2), {n, 0, 30} ]
Table[(1/8) Round[N[Sinh[2 ArcSinh[n]]^2, 100]], {n, 0, 30}] (* Artur Jasinski, Feb 10 2010 *)
LinearRecurrence[{5,-10,10,-5,1},{0,1,10,45,136},30] (* Harvey P. Dale, Aug 03 2014 *)
-
a(n)=binomial(n^2+1,2) \\ Charles R Greathouse IV, Apr 25 2012
-
for n in range(0,30): print(n**2*(n**2+1)/2, end=', ') # Stefano Spezia, Jan 10 2019
A004188
a(n) = n*(3*n^2 - 1)/2.
Original entry on oeis.org
0, 1, 11, 39, 94, 185, 321, 511, 764, 1089, 1495, 1991, 2586, 3289, 4109, 5055, 6136, 7361, 8739, 10279, 11990, 13881, 15961, 18239, 20724, 23425, 26351, 29511, 32914, 36569, 40485, 44671, 49136, 53889, 58939, 64295, 69966, 75961
Offset: 0
Albert D. Rich (Albert_Rich(AT)msn.com)
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
[n*(3*n^2-1)/2: n in [0..50]]; //Vincenzo Librandi, May 15 2011
-
seq(binomial(2*n+1,3)+binomial(n+1,3), n=0..37); # Zerinvary Lajos, Jan 21 2007
-
Table[n(3n^2-1)/2,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,1,11,39},40] (* Harvey P. Dale, Jul 19 2019 *)
-
vector(40, n, n*(3*n^2-1)/2)
A062392
a(n) = n^4 - (n-1)^4 + (n-2)^4 - ... 0^4.
Original entry on oeis.org
0, 1, 15, 66, 190, 435, 861, 1540, 2556, 4005, 5995, 8646, 12090, 16471, 21945, 28680, 36856, 46665, 58311, 72010, 87990, 106491, 127765, 152076, 179700, 210925, 246051, 285390, 329266, 378015, 431985, 491536, 557040, 628881, 707455, 793170, 886446, 987715
Offset: 0
From _Bruno Berselli_, Oct 30 2017: (Start)
After 0:
1 = -(1) + (2);
15 = -(1 + 2) + (3 + 4 + 5 + 2*3);
66 = -(1 + 2 + 3) + (4 + 5 + 6 + 7 + ... + 11 + 3*4);
190 = -(1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + ... + 19 + 4*5);
435 = -(1 + 2 + 3 + 4 + 5) + (6 + 7 + 8 + 9 + ... + 29 + 5*6), etc. (End)
- T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
-
a := n -> (2*n^2+n^3-1)*n/2; # Peter Luschny, Jul 12 2009
-
Table[n (n + 1) (n^2 + n - 1)/2, {n, 0, 40}] (* Harvey P. Dale, Oct 19 2011 *)
-
{ a=0; for (n=0, 1000, write("b062392.txt", n, " ", a=n^4 - a) ) } \\ Harry J. Smith, Aug 07 2009
A232713
Doubly pentagonal numbers: a(n) = n*(3*n-2)*(3*n-1)*(3*n+1)/8.
Original entry on oeis.org
0, 1, 35, 210, 715, 1820, 3876, 7315, 12650, 20475, 31465, 46376, 66045, 91390, 123410, 163185, 211876, 270725, 341055, 424270, 521855, 635376, 766480, 916895, 1088430, 1282975, 1502501, 1749060, 2024785, 2331890, 2672670, 3049501, 3464840, 3921225, 4421275
Offset: 0
-
[n*(3*n-2)*(3*n-1)*(3*n+1)/8: n in [0..40]];
-
Table[n (3 n - 2) (3 n - 1) (3 n + 1)/8, {n, 0, 40}]
-
a(n)=n*(3*n-2)*(3*n-1)*(3*n+1)/8 \\ Charles R Greathouse IV, Oct 07 2015
A260810
a(n) = n^2*(3*n^2 - 1)/2.
Original entry on oeis.org
0, 1, 22, 117, 376, 925, 1926, 3577, 6112, 9801, 14950, 21901, 31032, 42757, 57526, 75825, 98176, 125137, 157302, 195301, 239800, 291501, 351142, 419497, 497376, 585625, 685126, 796797, 921592, 1060501, 1214550, 1384801, 1572352, 1778337, 2003926, 2250325, 2518776
Offset: 0
Cf.
A000583 (squares with square indices),
A002593 (hexagonal numbers with square indices).
Cf.
A232713 (pentagonal numbers with pentagonal indices),
A236770 (pentagonal numbers with triangular indices).
-
[n^2*(3*n^2-1)/2: n in [0..40]];
-
I:=[0,1,22,117,376]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Aug 23 2015
-
A260810:=n->n^2*(3*n^2 - 1)/2: seq(A260810(n), n=0..50); # Wesley Ivan Hurt, Apr 25 2017
-
Table[n^2 (3 n^2 - 1)/2, {n, 0, 40}]
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 22, 117, 376}, 40] (* Vincenzo Librandi, Aug 23 2015 *)
-
vector(40, n, n--; n^2*(3*n^2-1)/2)
-
[n^2*(3*n^2-1)/2 for n in (0..40)]
A011779
Expansion of 1/((1-x)^3*(1-x^3)^2).
Original entry on oeis.org
1, 3, 6, 12, 21, 33, 51, 75, 105, 145, 195, 255, 330, 420, 525, 651, 798, 966, 1162, 1386, 1638, 1926, 2250, 2610, 3015, 3465, 3960, 4510, 5115, 5775, 6501, 7293, 8151, 9087, 10101, 11193, 12376, 13650
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Project Euler, Problem 577. Counting hexagons.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,3,-6,6,-3,3,-3,1).
-
R:=PowerSeriesRing(Integers(), 60);
Coefficients(R!( 1/((1-x)^3*(1-x^3)^2) )); // G. C. Greubel, Oct 22 2024
-
CoefficientList[Series[1 / ((1 - x)^3 (1 - x^3)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 23 2013 *)
-
Vec(1/((1-x)^3*(1-x^3)^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
-
a(n)=1/216 * n^4 + 1/12 * n^3 + 37/72 * n^2 + [5/4, 139/108, 131/108][1+n%3] * n + [1, 10/9, 7/9][1+n%3] \\ Yurii Ivanov, Jul 06 2021
-
def A011779_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x)^3*(1-x^3)^2) ).list()
A011779_list(60) # G. C. Greubel, Oct 22 2024
A177708
Pentagonal triangle.
Original entry on oeis.org
1, 6, 12, 18, 57, 51, 40, 156, 209, 145, 75, 330, 531, 534, 330, 126, 600, 1074, 1278, 1122, 651, 196, 987, 1895, 2488, 2559, 2081, 1162, 288, 1512, 3051, 4275, 4824, 4563, 3537, 1926, 405, 2196, 4599, 6750, 8100, 8370, 7506, 5634, 3015
Offset: 1
The row for n = 4 is (1+5+12+22), (35+51+70), (92+117), 145 => 40, 156, 209, 145.
1;
6, 12;
18, 57, 51;
40, 156, 209, 145;
75, 330, 531, 534, 330;
126, 600, 1074, 1278, 1122, 651;
196, 987, 1895, 2488, 2559, 2081, 1162;
288, 1512, 3051, 4275, 4824, 4563, 3537, 1926;
405, 2196, 4599, 6750, 8100, 8370, 7506, 5634, 3015;
550, 3060, 6596, 10024, 12570, 13775, 13450, 11631, 8534, 4510;
-
A000326 :=proc(n) n*(3*n-1)/2 ; end proc:
A177708 := proc(n,k) kc := 1 ; nsk := n ; ns := 1 ; while kc < k do ns := ns+nsk ; kc := kc+1 ; nsk := nsk-1 ; end do: add(A000326(i),i=ns..ns+nsk-1) ; end proc: # R. J. Mathar, Dec 14 2010
-
Table[Total/@TakeList[PolygonalNumber[5,Range[60]],Range[n,1,-1]],{n,10}]//Flatten (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Feb 17 2018 *)
A264854
a(n) = n*(n + 1)*(11*n^2 + 11*n - 10)/24.
Original entry on oeis.org
0, 1, 14, 61, 175, 400, 791, 1414, 2346, 3675, 5500, 7931, 11089, 15106, 20125, 26300, 33796, 42789, 53466, 66025, 80675, 97636, 117139, 139426, 164750, 193375, 225576, 261639, 301861, 346550, 396025, 450616, 510664, 576521, 648550, 727125, 812631, 905464, 1006031
Offset: 0
Cf. similar sequences provided by the partial sums of centered k-gonal pyramidal numbers:
A006522 (k=1),
A006007 (k=2),
A002817 (k=3),
A006325 (k=4),
A006322 (k=5),
A000537 (k=6),
A006323 (k=7),
A006324 (k=8),
A236770 (k=9),
A264853 (k=10), this sequence (k=11),
A062392 (k=12),
A264888 (k=13).
-
[n*(n+1)*(11*n^2+11*n-10)/24: n in [0..50]]; // Vincenzo Librandi, Nov 27 2015
-
Table[n (n + 1) (11 n^2 + 11 n - 10)/24, {n, 0, 50}]
-
a(n)=n*(n+1)*(11*n^2+11*n-10)/24 \\ Charles R Greathouse IV, Jul 26 2016
Showing 1-10 of 10 results.
Comments