A317714 Chessboard rectangles sequence (see Comments), also A037270 interleaved with A163102.
0, 0, 1, 2, 10, 18, 45, 72, 136, 200, 325, 450, 666, 882, 1225, 1568, 2080, 2592, 3321, 4050, 5050, 6050, 7381, 8712, 10440, 12168, 14365, 16562, 19306, 22050, 25425, 28800, 32896, 36992, 41905, 46818, 52650, 58482, 65341, 72200, 80200, 88200, 97461, 106722, 117370
Offset: 1
Examples
In a 4 X 4 chessboard there are two such rectangles (for both p = q = 3) and the coordinates of their lower left vertices are a1 and b2. Therefore, a(4) = 2.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
Programs
-
Magma
[(5-5*(-1)^n-12*n+12*(-1)^n*n+14*n^2-6*(-1)^n*n^2-8*n^3+2*n^4)/64: n in [1..50]]; // Vincenzo Librandi, Aug 05 2018
-
Mathematica
CoefficientList[Series[-((x^2 (1+4 x^2+x^4))/((-1+x)^5 (1+x)^3)),{x,0,44}],x] LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 0, 1, 2, 10, 18, 45, 72}, 80] (* Vincenzo Librandi, Aug 06 2018 *)
-
PARI
a(n) = sum(i = 1, n-1, floor(i/2)^3); \\ Jinyuan Wang, Aug 12 2019
-
Python
n, a = 0, 0 while n < 10: print(n,a) n, a = n+1, a+((n+1)//2)**3 # A.H.M. Smeets, Aug 09 2019
Formula
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8), with a(1)=0, a(2)=0, a(3)=1, a(4)=2, a(5)=10, a(6)=18, a(7)=45, a(8)=72.
G.f.: -(x^3*(1+ 4*x^2 + x^4))/((-1+x)^5*(1+x)^3).
a(n) = (5 - 5*(-1)^n - 12*n + 12*(-1)^n*n + 14*n^2 - 6*(-1)^n*n^2 - 8*n^3 + 2*n^4)/64.
a(n) = Sum_{i=1..n-1} floor(i/2)^3. - Ridouane Oudra, Jul 24 2019
E.g.f.: (1/64)*exp(-x)*(-5-6*x-6*x^2+exp(2*x)*(5-4*x+4*x^2+4*x^3+2*x^4)). - Stefano Spezia, Aug 14 2019
Sum_{n>=3} 1/a(n) = Pi^2 - Pi*coth(Pi) - 5. - Amiram Eldar, Jul 04 2025
Comments