cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: M. Ryan Julian Jr.

M. Ryan Julian Jr.'s wiki page.

M. Ryan Julian Jr. has authored 3 sequences.

A326658 a(n) = 6*floor(n/2) + ceiling((n-1)^2/2).

Original entry on oeis.org

1, 0, 7, 8, 17, 20, 31, 36, 49, 56, 71, 80, 97, 108, 127, 140, 161, 176, 199, 216, 241, 260, 287, 308, 337, 360, 391, 416, 449, 476, 511, 540, 577, 608, 647, 680, 721, 756, 799, 836, 881, 920, 967, 1008, 1057, 1100, 1151, 1196, 1249, 1296, 1351, 1400, 1457, 1508, 1567, 1620, 1681
Offset: 0

Author

M. Ryan Julian Jr., Sep 12 2019

Keywords

Comments

a(n) gives the maximum number of inversions in a permutation on n + 3 symbols consisting of a single n-cycle and 3 fixed points.
Sequence is a diagonal of A326296.

Crossrefs

Diagonal of A326296.

Programs

  • Mathematica
    Table[6*Floor[n/2] + Ceiling[(n - 1)^2/2], {n, 80}] (* Wesley Ivan Hurt, Sep 13 2019 *)
  • PARI
    a(n) = 6*floor(n/2) + ceil((n-1)^2/2) \\ Andrew Howroyd, Sep 23 2019
    
  • PARI
    Vec((1 - 2*x + 7*x^2 - 4*x^3) / ((1 - x)^3*(1 + x)) + O(x^40)) \\ Andrew Howroyd, Sep 23 2019

Formula

a(n) = 6*floor(n/2) + ceiling((n-1)^2/2).
a(n) = A326296(3 + n, n) for n > 0.
From Colin Barker, Sep 13 2019: (Start)
G.f.: (1 - 2*x + 7*x^2 - 4*x^3) / ((1 - x)^3*(1 + x)).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n >= 4.
a(n) = (-3 + 7*(-1)^n + 8*n + 2*n^2) / 4.
(End)

A326657 a(n) = 4*floor(n/2) + ceiling((n-1)^2/2).

Original entry on oeis.org

1, 0, 5, 6, 13, 16, 25, 30, 41, 48, 61, 70, 85, 96, 113, 126, 145, 160, 181, 198, 221, 240, 265, 286, 313, 336, 365, 390, 421, 448, 481, 510, 545, 576, 613, 646, 685, 720, 761, 798, 841, 880, 925, 966, 1013, 1056, 1105, 1150, 1201, 1248, 1301, 1350, 1405, 1456, 1513, 1566, 1625, 1680
Offset: 0

Author

M. Ryan Julian Jr., Sep 12 2019

Keywords

Comments

a(n) gives the maximum number of inversions in a permutation on n + 2 symbols consisting of a single n-cycle and 2 fixed points.
Sequence is a diagonal of A326296.

Crossrefs

Diagonal of A326296.

Programs

  • PARI
    a(n) = 4*floor(n/2) + ceil((n-1)^2/2) \\ Andrew Howroyd, Sep 23 2019
    
  • PARI
    Vec((1 - 2*x + 5*x^2 - 2*x^3) / ((1 - x)^3*(1 + x)) + O(x^40)) \\ Andrew Howroyd, Sep 23 2019

Formula

a(n) = 4*floor(n/2) + ceiling((n-1)^2/2).
a(n) = A326296(2 + n, n) for n > 0.
From Colin Barker, Sep 15 2019: (Start)
G.f.: (1 - 2*x + 5*x^2 - 2*x^3) / ((1 - x)^3*(1 + x)).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n >= 4.
a(n) = (-1 + 5*(-1)^n + 4*n + 2*n^2) / 4.
(End)
E.g.f.: (1/4)*(5*exp(-x) + exp(x)*(-1 + 6*x + 2*x^2)). - Stefano Spezia, Sep 16 2019 after Colin Barker

A326296 Triangle of numbers T(n,k) = 2*floor(k/2)*(n-k) + ceiling((k-1)^2/2), 1<=k<=n.

Original entry on oeis.org

0, 0, 1, 0, 3, 2, 0, 5, 4, 5, 0, 7, 6, 9, 8, 0, 9, 8, 13, 12, 13, 0, 11, 10, 17, 16, 19, 18, 0, 13, 12, 21, 20, 25, 24, 25, 0, 15, 14, 25, 24, 31, 30, 33, 32, 0, 17, 16, 29, 28, 37, 36, 41, 40, 41, 0, 19, 18, 33, 32, 43, 42, 49, 48, 51, 50, 0, 21, 20, 37, 36, 49, 48, 57, 56, 61, 60, 61
Offset: 1

Author

M. Ryan Julian Jr., Sep 10 2019

Keywords

Comments

T(n,k) gives the maximum number of inversions in a permutation on n symbols containing a single k-cycle and (n-k) other fixed points.
T(n,n) = A000982(n).
T(n,n-1) = A097063(n).

Examples

			Triangle begins:
0;
0, 1;
0, 3, 2;
0, 5, 4, 5;
0, 7, 6, 9, 8;
0, 9, 8, 13, 12, 13;
0, 11, 10, 17, 16, 19, 18;
0, 13, 12, 21, 20, 25, 24, 25;
0, 15, 14, 25, 24, 31, 30, 33, 32;
0, 17, 16, 29, 28, 37, 36, 41, 40, 41;
0, 19, 18, 33, 32, 43, 42, 49, 48, 51, 50;
0, 21, 20, 37, 36, 49, 48, 57, 56, 61, 60, 61;
...
		

Crossrefs

Diagonals give A000982, A097063, A326657, A326658.
Row sums give A000330.

Programs

  • PARI
    T(n,k) = {2*floor(k/2)*(n-k) + ceil((k-1)^2/2)} \\ Andrew Howroyd, Sep 10 2019

Formula

T(n,k) = 2*floor(k/2)*(n-k) + ceiling((k-1)^2/2).
T(n,k) = 2*floor(k/2)*(n-k) + binomial(k,2) - ceiling(k/2) + 1.